期刊文献+

Banach空间微分方程广义弱解的整体存在性

Global Existence of Generalized Weak Solutions for Differential Equations in a Banach Space
下载PDF
导出
摘要 在弱完备的实Banach空间E中考虑微分方程的Cauchy问题:x′(t)=f(t,x(t)),x(0)=x0,其中x0∈E,f:J×E→E(J=[0,+∞))。通过使用弱非紧型条件给出(Cauchy problem,Cp)的广义弱解的整体存在性。 The Cauchy problem is considered for differential equations in a weakly complete Banach Space E: x'(t)=f(t,x(t)),x(0)=x0, (Cp) where x0∈E,f:J×B→E(J=[0,a], D belong bo E). By using weak noncompact type's conditions, a global existence theorem of generalized weak solutions to equa. (Cp) is obtained.
作者 范进军
出处 《科学技术与工程》 2008年第18期5119-5120,5125,共3页 Science Technology and Engineering
关键词 BANACH空间 对偶空间 广义弱解 弱非紧型测度 Banach space dual space generalized weak solutions weakly noncompact measures
  • 相关文献

参考文献3

  • 1[1]Lakshmikantham V,Leela.S.Nonlinear differential equations in abstract spaces.Newyork:Pergaman Press,1981:1-230
  • 2[2]郭大钧,黄春朝,梁方豪.实变函数与泛函分析.山东大学出版社,1984:334-335
  • 3范进军,吕永敬.Banach空间微分方程广义弱解的局部存在性[J].山东师范大学学报(自然科学版),2004,19(1):1-4. 被引量:2

二级参考文献3

  • 1Evin Craner,Lakshmikantham V,Mitchell A R. On the Existence of Weak Solutions of Differential Equations in Nonreflexive Banach Spaces[J].Nonlinear Analysis,Theory,Methods & Application, 1978, (2): 169 ~ 177
  • 2Lakshmikantham V,Leela S.Differential and Integral Inequalities[M] .Newyork:Academic Press,1969.1 ~ 200
  • 3Lakshmikantham V,Leela S, Nonlinear Differential Equations in Abstract Spaces[M].Newyork:Pergaman Press, 1981.1 ~ 230

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部