摘要
在弱完备的实Banach空间E中考虑微分方程的Cauchy问题:x′(t)=f(t,x(t)),x(0)=x0,其中x0∈E,f:J×E→E(J=[0,+∞))。通过使用弱非紧型条件给出(Cauchy problem,Cp)的广义弱解的整体存在性。
The Cauchy problem is considered for differential equations in a weakly complete Banach Space E: x'(t)=f(t,x(t)),x(0)=x0, (Cp) where x0∈E,f:J×B→E(J=[0,a], D belong bo E). By using weak noncompact type's conditions, a global existence theorem of generalized weak solutions to equa. (Cp) is obtained.
出处
《科学技术与工程》
2008年第18期5119-5120,5125,共3页
Science Technology and Engineering