期刊文献+

微注塑成形中熔体充模流动分析及其数值模拟 被引量:33

Analysis and Numerical Simulation of Polymer Melt Filling in Micro Injection Molding
下载PDF
导出
摘要 借鉴宏观熔体的流变学理论和建模技术,针对微尺度流道中的聚合物熔体流动特性,采用模型修正方法,建立反映微小通道中熔体流动特性的理论模型。同时,应用数值模拟方法,研究微尺度粘度、壁面滑移和熔体与模具间的表面传热系数对微小熔体流动的影响关系,并与相关试验数据进行比较。结果表明,微流道中的熔体粘度明显小于传统理论下的粘度值,且与微流道的特征尺寸成正比。随微流道特征尺寸减小,滑移系数也明显减小,壁面滑移速度则增大。考虑局部表面传热系数时微流道中的熔体温度分布具有尺寸效应。微尺度流道中的熔体流动行为与宏观熔体有许多不同。 The theoretical models of melt flowing characterictics in microscale channels are constructed by model modification method according to the macroscopic rheological theories and the modeling technology for polymeric melt. Moreover, the influences of microscale viscosity, wall slip and convection heat transfer coefficient between polymer melt and mold wall on micro melt flowing are investigated by using numerical simulation method and compared with the existing experimental data. The results indicate that the viscosities of polymeric melt flowing in microchannels are obviously lower than those calculated with the conventional viscosity model and are proportional to the characteristic dimensions of microchannel. With the decrease of the characteristic dimensions of microchannel, the slip coefficients are obviously reduced, while the slip velocities of polymeric melt on the wall are increased. In addition, considering the surface convection heat transfer coefficients the distribution of melt temperature in microchannels is subject to the size effect. The flowing behaviors of polymeric melt in microchannels are different from those in macrochannels in some aspects.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2008年第9期43-49,共7页 Journal of Mechanical Engineering
基金 国家自然科学基金(50275020) 国家'十一五'科技支撑计划(2006BAF04B13)。
关键词 微注塑成形 充模流动 理论建模 数值模拟 Micro injection molding Filling flow Theoretical modeling Numerical simulation
  • 相关文献

参考文献14

  • 1PLOTTER V, HOLSTEIN N, PLEWA K, et al. Replication of micro components by different variants of injection molding[J]. Microsystem Technologies, 2004, 10(6-7): 547-551.
  • 2MICHAELI W, SPENNEMANN A, GARTNER R. New plastification concepts for micro injection molding[J]. Microsystem Technologies, 2002, 8(1): 55-57.
  • 3YONG W B. Simulation of the filling process in molding components with micro channels[J]. Microsystem Technologies, 2005, 11(6): 410-415.
  • 4YAO D G, KIM B. Scaling issues in miniaturization of injection molded parts[J]. Journal of Manufacturing Science and Engineering, 2004, 126(4): 733-738.
  • 5CHIEN R D, JONG W R, CHEN S C. Study on rheological behavior of polymer melt flowing through micro-channels considering the wall-slip effect[J]. Journal of Micromechanics and Microengineering, 2005, 15(8): 1 389-1 396.
  • 6YU L Y, LEE L J, KOELLING K W. Flow and heat transfer simulation of injection molding with microstructures[J]. Polymer Engineering and Science, 2004, 44(10): 1 866-1 876.
  • 7YAO D G, KIM B. Simulation of the filling process in microchannels for polymeric materials[J]. Journal of Micromechanics and Microengineering, 2002, 12(5): 604-610.
  • 8ISRAELACHVILI J N. Measurement of the viscosity of liquids in very thin films[J]. Journal of Colloid Interface Science, 1986, 110(11): 263-271.
  • 9BATCHELOR G K. An introduction to fluid dynamics[M]. Cambridge: Cambridge University Press, 1970.
  • 10HATZIKIRIAKOS S G, DEALY J M. Wall slip of molten high density polyethylenes. II. capillary rheometer studies[J]. Journal of Rheology, 1992, 36(4): 703-714.

同被引文献370

引证文献33

二级引证文献157

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部