期刊文献+

Microstructure transformation of carbon nanofibers during graphitization 被引量:1

Microstructure transformation of carbon nanofibers during graphitization
下载PDF
导出
摘要 The microstructures of vapor-grown carbon nanofibers(CNFs) before and after graphitization process were analyzed by high resolution transmission electron microscopy(HRTEM),Raman spectroscopy,X-ray diffractometry(XRD),near-edge-X-ray absorption fine structure spectroscopy(NEXAFS) and thermogravimetric analysis(TGA).The results indicate that although non-graphitized CNFs have the characteristics of higher disorder,a transformation is found in the inner layer of tube wall where graphite sheets become stiff,which demonstrates the characteristics of higher graphitization of graphitized CNFs.The defects in outer tube wall disappear because the amorphous carbon changes to perfect crystalline carbon after annealing treatment at about 2 800 ℃.TGA analysis in air indicates that graphitized CNFs have excellent oxidation resistance up to 857 ℃.And the graphitization mechanism including four stages was also proposed. The microstructures of vapor-grown carbon nanofibers(CNFs) before and after graphitization process were analyzed by high resolution transmission electron microscopy(HRTEM), Raman spectroscopy, X-ray diffractometry(XRD), near-edge-X-ray absorption fine structure spectroscopy(NEXAFS) and thermogravimetric analysis(TGA). The results indicate that although non-graphitized CNFs have the characteristics of higher disorder, a transformation is found in the inner layer of tube wall where graphite sheets become stiff, which demonstrates the characteristics of higher graphitization of graphitized CNFs. The defects in outer tube wall disappear because the amorphous carbon changes to perfect crystalline carbon after annealing treatment at about 2 800 ℃. TGA analysis in air indicates that graphitized CNFs have excellent oxidation resistance up to 857 ℃. And the graphitization mechanism including four stages was also proposed.
出处 《中国有色金属学会会刊:英文版》 EI CSCD 2008年第5期1094-1099,共6页 Transactions of Nonferrous Metals Society of China
关键词 碳纳米纤维 微结构 石墨化 金属学 carbon nanofibers microstructure graphitization mechanism
  • 相关文献

参考文献22

  • 1IIJIMA S. Helical microtubules of graphite carbon [J]. Nature, 1991, 354: 56-58.
  • 2EDIE D D. The effect of processing on the structure and properties of carbon fibers [J]. Carbon, 1998, 36(4): 345-362.
  • 3HAMMEL E, TANG M, TRAMPERT T, SCHMITT K, MAUTHNER A, EDER, PSCHKE P. Carbon nanofibers for composite applications [J]. Carbon, 2004, 42: 1153-1158.
  • 4CHEN C F, LIN C L, WANG C M. Field emission from aligned carbon nanofibers grown in situ by hot filament chemical vapor desposition [J]. Appl Phys Lett, 2003, 82(15): 2515-2517.
  • 5SMITH R C, CAREY J D, POA C H P, COX D C, SILVA S R P. Electron field emission from room temperature grown carbon nanofibers[J]. J Appl Phys, 2004, 95(6): 3153-3157.
  • 6LUEKING A D, YANG R T, RODRIGUEZ N M, BAKER R T K. Hydrogen storage in graphite nanofibers: Effect of synthesis catalyst and pretreatment conditions [J]. Langmuir, 2004, 20:714-721.
  • 7ZOU G F, ZHANG D W, DONG C, LI H, XING K, FEI L F, QIAN Y T. Carbon nanofibers: Synthesis, characterization, and electro- chemical properties [J]. Carbon, 2006, 44: 828-832.
  • 8唐元洪,张勇.类金刚石碳纳米线的制备及生长机理[J].中国有色金属学报,2004,14(9):1461-1464. 被引量:1
  • 9ENDO M, TAKEUCHI K, HIRAOKA T, FURUTA T, KASAI T, SUN X, KIANG C H, DRESSELHAUS M S. Stacking nature of graphene layers in carbon nanotubes and nanofibers [J]. J Phys Chem Solids, 1997, 58(11): 1702-1712.
  • 10CI L J, LI Y, WEI B Q, LIANG J, XU C, WU D. Preparation of carbon nanofibers by the floating catalyst method [J]. Carbon, 2000, 38(14): 1933-1937.

二级参考文献18

  • 1[1]Kroto H W. Space, stars, C60 and soot[J]. Science,1988, 242: 1139-1145.
  • 2[2]Kratscher W, Lamb L D, Fostiropoulos K, et al. Solid C60: A new form of carbon[J]. Nature, 1990, 347:354 - 358.
  • 3[3]Iijima S. Helical microtubules of graphitic carbon[J].Nature, 1991, 345: 56-58.
  • 4[4]Koruga D, Hameroff S, Withers J, et al. Fullerence C60 [M]. North Holland, Amsterdam: Elsevier,1993. 97-99.
  • 5[5]Prawer S, Rossouw C J. Structural investigation of helium ion-beam-irradiated glassy carbon[J]. J Appl Phys, 1988, 63(9): 4435-4439.
  • 6[6]Cuomo J J, Pappas D L, Bruley John, et al. Vapor deposition processes for amorphous carbon films with SP3 fractions approaching diamond[J]. J Appl Phys 1991, 70(3): 1706- 1711.
  • 7[7]Endo M, Kim Y A, Hayashi T, et al. Structural characterization of cup-stacked-type nanofibers with an entirely hollow core[J]. Appl Phys Lett, 2002, 80(7):1267 - 1269.
  • 8[8]Cruden B A, Cassell A M, Qi Ye, et al. Reactor design considerations in the hot filament/direct current plasma synthesis of carbon nanofibers [J]. J Appl Phys, 2003, 94(6): 4070-4078.
  • 9[9]Endo M , Kim Y A, Hayashi T, et al. Vapor-grown carbon fibers(VGCFs): Basic properties and their batteryapplications[J]. Carbon, 2001, 39(9): 1287-1297.
  • 10[10]Jiang N, Koie R, Lnaoka T, et al. Carbon nanofibers synthesized by decomposition of alcohol at atmosphericpressure[J]. Appl Phy Lett, 2002, 81 (3):526 - 528.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部