期刊文献+

用有限单元法计算厚壁圆管疲劳寿命 被引量:1

Computations of the fatigue life for thick-wall cylinder by finite element method
下载PDF
导出
摘要 用二维有限元计算应力强度因子的近似值,通过修正系数F的修正得到较精确的应力强度因子KI。利用Paris方程作为厚壁园管内表面裂纹扩展速率模型并给出方程系数,从而计算了厚壁圆管内表面裂纹扩展深度与压力循环次数的关系,计算结果与实验结果相吻合。在此基础上,计算实验模拟管的疲劳寿命,给出了压力-疲劳寿命关系曲线;最后,给出了具有内表面裂纹的高压厚壁圆管的疲劳寿命的保守计算。 The stress intensity factors were computed approximately by two-dimensional finite element method and the more accurate values of the stress intensity factor K1 were obtained through correction by using an effective coefficient F. The Paris equation was used as the model of the growth rate of the crack at the inner surface of the thick-wall cylinder and the coefficients in the equation had been given. Therefore the relationship of the growth depth of the crack and pressure cycles had been calculated and the caleulative results were in agreement with the tests. The fatigue life of each experimental simulated tube and the relation curves of fatigue life vs pressure were given on the basic of that. Finally, the fatigue life of the thick-wall cylinder with the inner surface crack was calculated conservatively.
出处 《兵器材料科学与工程》 CAS CSCD 北大核心 2008年第5期61-64,共4页 Ordnance Material Science and Engineering
关键词 疲劳寿命 应力强度因子 有限单元法 厚壁圆管 裂纹 fatigue life stress intensity factors finite element method thick-wall cylinder crack
  • 相关文献

参考文献5

二级参考文献6

  • 1杨芳毓.表面裂纹K1计算方法的研究与评价[J].机械工程学报,1985,21(3).
  • 2Paris P C,Erdogan F.A Critical Analysis of Crack ropagation Laws[J].Journal of Basic Engineering.1963,85(4):528-538.
  • 3Koh S K.Fatigue Analysis of Autofrettaged Pressure Vessels wim Radial Holes[J].International Joumal of Fatigue,2000,22(6):717-726.
  • 4Irwin G R.The Crack Entension Force for a Pant-Through Crack in a Plate[J].Journal of Applied Mechanics(ASME),1962,29(4):651-54.
  • 5Smitt W,Keim E.Linear Elastic Analysis of Semi-Elliptical Axial Surface Cracks in a Hollow Cylinder[J].The Intemational Joumal of Pressure Vessels and PiPing,1979,7(2):105-118.
  • 6F. Delale,F. Erdogan. Stress intensity factors in a hollow cylinder containing a radial crack[J] 1982,International Journal of Fracture(4):251~265

共引文献6

同被引文献4

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部