期刊文献+

正弦波电磁场对大鼠椎间盘纤维环细胞的生物学影响

Electromagnetic fields and the proliferation and matrix synthesis of annulus fibrosus cells
原文传递
导出
摘要 目的研究低频正弦波电磁场对大鼠椎间盘纤维环细胞增殖和细胞外基质的生物学影响。方法体外培养大鼠生长良好的椎间盘纤维环细胞,取生长良好的第3代细胞,随机分为实验组和对照组,实验组采用75Hz正弦波电磁场的间断刺激,对照组置于同样培养条件下但不暴磁。通过流式细胞术和四甲基偶氮唑蓝(MTT)法检测细胞周期和增殖活性,逆转录聚合酶链反应(RT—PCR)检测椎间盘细胞胶原和蛋白聚糖(aggre-can)的表达情况,AlcianBlue法检测糖胺多糖(sGAG)含量。结果暴磁刺激初期细胞增殖效果不明显,刺激天数〉4d时能显著促进细胞增殖(P〈0.05),与对照组相比,实验组细胞Ⅰ、Ⅱ型胶原、蛋白聚糖的表达水平均显著上调(P〈0.05),GAG含量也增加。结论正弦波电磁场可以促进纤维环细胞的增殖,上调正常椎间盘细胞外基质Ⅰ、Ⅱ型胶原、蛋白聚糖的表达水平和GAG含量,可望为治疗椎间盘退变提供一种新的思路。 Objective To study the biological effects of sinusoidal electromagnetic fields (EMFs) on prolifer- ation and extracellular matrix (ECM) formation by annulus fibrosus (AF) cells in rats. Methods AF cells isolated from rats were randomly divided into a control group and an experimental group. The cells in the experimental group were stimulated with an EMF, while those in the control group were held under the same culture conditions but with no EMF. Flow cytometry and MTT were performed to observe the effects on the cell cycle and proliferation. Collagen and aggrecan expression were examined after amplification with a reverse transcriptase polymerase chain reaction ( RT- PCR). Sulfated glycosaminoglycan (sGAG) content was detected by applying the Alcian blue method. Results AF cell proliferation was not significant until after 4 days of stimulation. Compared with the control group, the expression of type Ⅰ and Ⅱ collagen and Aggrecan were up-regulated, and sGAG content was increased in the experimental group. Conclusion AF cell proliferation was enhanced by EMF. Gene expression of collagen type I and Ⅱ and Aggrecan in- creased, as well as sGAG levels. The results suggest an approach for treating of intervertebral disc degeneration.
出处 《中华物理医学与康复杂志》 CAS CSCD 北大核心 2008年第8期519-522,共4页 Chinese Journal of Physical Medicine and Rehabilitation
基金 国家自然科学基金(30571873)
关键词 电磁场 椎间盘 纤维环细胞 Electromagnetic fields Intervertebral disc Annulus fibrosus cells
  • 相关文献

参考文献15

  • 1张旗涛,王立春,姚猛.椎间盘退行性变的生物学机制[J].中华骨科杂志,2006,26(3):206-210. 被引量:19
  • 2Frey A H. Electromagnetic field interactions with biological systems. FASEB J, 1993, 7: 272-281.
  • 3Parivar K, Kouehesfehani MH, Boojar MM ,et al. Organ culture studies on the development of mouse embryo limb buds under EMF influ-ence. Int J Radiat B o1,2006,82.455-464.
  • 4Patterson TE,Sakai Y, Grabiner MD, et al. Exposure of murine cells to pulsed electromagnetic fields rapidly activates the mTOR signaling pathway. Bioelectromagnetics ,2006,27:535-544.
  • 5Funk RH, Monsees TK. Effects of electromagnetic fields on cells: physiological and therapeutical approaches and molecular mechanisms of interaction. A review. Cells Tissues Organs, 2006, 182: 59-78.
  • 6Jahns ME, Lou E, Durdle NG, et al. The effect of pulsed electromagnetic fields on chondrocyte morphology. Med Biol Eng Comput, 2007, 45: 917-925.
  • 7Taylor KF, Inoue N, Rafiee B, et al. Effect of pulsed electromagnetic fields on maturation of regenerate bone in a rabbit limb lengthening model. J Orthop Res, 2006, 24: 2-10.
  • 8Bjornsson S. Quantitation of proteoglycans as glycosaminoglycans in biological fluids using an alcian blue dot blot analysis. Anal Biochem, 1998, 256: 229-237.
  • 9Anderson DG, Risbud M V, Shapiro I M, et al. Cell-based therapy for disc repair. Spine J, 2005, 5 : 297-303.
  • 10于胜吉,孙秀芳,邱贵兴,Yang B,Roth S,Whyne C,Yee AJ.周期性压力作用下椎间盘细胞中整合素α_3的表达[J].中华物理医学与康复杂志,2005,27(4):209-213. 被引量:1

二级参考文献74

  • 1Diniz P, Shomura K, Soejima K, et al. Effects of pulsed electromagnetic field(PEMF) stimulation on bone tissue like formation are dependent on the maturation stages of the osteoblasts [J]. Bioelectromagnetics, 2002, 23(5): 398-405.
  • 2Zhou J, Yao G, Zhang J, et al. CREB DNA binding activation by a 50 Hz magnetic field in HL60 cells is dependent on extraand intracellular Ca(2+) but not PKA, PKC, ERK, or p38 MAPK[J]. Biochem Biophys Res Commun, 2002, 296(4): 1013-1018.
  • 3Leman ES, Sisken BF, Zimmer S, et al. Studies of the interactions between melatonin and 2 Hz, 0.3 mT PEMF on the proliferation and invasion of human breast cancer cells[J]. Bioelectromagnetics, 2001,22(3): 178-184.
  • 4Yamaguchi DT, Huang J, Ma D, et al. Inhibition of gap junction intercellular communication by extremely low-frequency electromagnetic fields in osteoblast-like models is dependent on cell differentiation [J]. J Cell Physiol, 2002, 190(2): 180-188.
  • 5Heida T, Wagenaar JB, Rutten WL, et al. Investigating membrane breakdown of neuronal cells exposed to nonuniform electric fields by finite-element modeling and experiments [J]. IEEE Trans BME, 2002,49(10): 1195-1203.
  • 6Heredia Rojas JA, Rodriguez De La Fuente AO, del Roble Velazco Campos M, et al. Cytological effects of 60 Hz magnetic fields on human lymphocytes in vitro: sister-chromatid exchanges, cell kinetics and mitotic rate [J]. Bioelectromagnetics, 2001, 22(3): 1
  • 7Ottaviani E, Malagoli D, Ferrari A, et al. 50 Hz magnetic fields of varying flux intensity affect cell shape changes in invertebrate immunocytes: the role of potassium ion channels[J]. Bioelectromagnetics,2002, 23(4): 292-297.
  • 8Iino M, Okuda Y. Osmolality dependence of erythrocyte sedimentation and aggergation in a strong magnetic field[J]. Bioelectromagnetics,2001, 22(1): 46-52.
  • 9Pessina GP, Aldinucci C, Palmi M, et al. Pulsed electromagnetic fields affect the intracellular calcium concentrations in human astrocytoma cells[J]. Bioelectromagnetics, 2001, 22(7): 503-510.
  • 10Guerkov HH, Lohmann CH, Liu Y, et al. Pulsed electromagnetic fields increase growth factor release by nonunion cells [J]. Clin Orthop,2001(384): 265-279.

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部