期刊文献+

任意分辨率的SSCA算法研究 被引量:3

Research of SSCA with arbitrary resolution
下载PDF
导出
摘要 提出当DFT点数不是2的整数次幂时,用AFT计算SSCA算法中的DFT得到信号循环谱,并对AFT中的乘法进行改进.借助实数乘法和实数加法运算量的换算系数,用加法次数作为衡量算法计算量的标准,给出改进的AFT和DFT、FFT的计算量的闭合表达式,并用它们分析SSCA算法的计算量.最后,利用AFT对SSCA算法进行实现和性能仿真.仿真和试验结果表明:根据不同的分辨率,采用FFT或AFT计算SSCA算法中的DFT,能以最小的运算量实现任意分辨率的SSCA算法. DFT contained by strip spectral correlation algorithm (SSCA) was computed by AFT to obtain the cyclic spectral when the length of DFT was not the integral power of 2.And multiplication of AFT algorithm was modified. By virtue of conversion parameter between real multiplication and real addition, the paper presented the closed-form expression of modified AFT, FFT and DFT employing the number of addition, and the computational complexity of SSCA was analyzed in terms of them. And SSCA was realized by AFT, through which its performance was simulated as well. Simulation results prove that SSCA with arbitrary resolution can be realized with minimum computational complexity if DFT is calculated using FFT or AFT according to different resolution.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2008年第7期1040-1043,共4页 Journal of Harbin Institute of Technology
基金 国家高技术研究发展计划资助项目(2004AA001210)
关键词 AFT 循环谱 SSCA算法 计算量 arithmetic Fourier transform(AFT) cyclic spectral correlation strip spectral correlation algorithm computation complexity
  • 相关文献

参考文献7

  • 1GARDNER W A. Measurement of spectral correlation [ J ]. IEEE Trans. Acoust, Speech, Signal Processing, 1986,34:1111 - 1123.
  • 2BROWN W A, LOOMIS H H. Digital implementations of spectral correlation analyzers [ J ]. IEEE Transactions on Signal Processing, 1993,41:703 - 720.
  • 3REED I S, TUFTS D W, YU Xiao, et al. Fourier analysis and signal processing by use of Mobius inversion fonnular [J]. IEEE Trans ASSP,1990,38 (3) :458 -470.
  • 4KELLEY B T, MADISETTI V K. Efficient VLSI architectures for the Arithmetic Fourier Transform (AFT) [ J ]. IEEE Transactions on Signal Processing,1993,41:365 -384.
  • 5GE Xi-jin, CHEN Nan-xian, Chen Zhao-dou. Efficient algorithm for 2 - D arithmetic fourier transform [ J ]. IEEE Transactions on Signal Processing,1997, 45:2136-2140.
  • 6ATLAS V G, ATLAS D G, BOVBEL E I. 2 - D arithmetic fourier transform using the brims method [ J ]. IEEE Transactions on circuits and systems - I: funda- mental theory and applications, 1997, 44:546-551.
  • 7ZHANG Xianchao, WAN Yingyu, CHEN Guoliang. A new approach for implementing the Arithmetic Fourier Transform (AFT) [ C]//Proceeding of the fourth International Conference/Exhibition on High Performance Computing in Asia-Pacific Region ( HPC-ASIA2000 ). [ S. l. ] : IEEE Computer Society, 2000:633 - 634.

同被引文献34

  • 1Gardner W A, Antonio N, and Paura L. Cyclostationarity: half a century of research. Signal Processing, 2006, 86(4): 639-697.
  • 2Zhang Hai-jian, Ruyet D L, and Terre M. Spectral correlation of multicarrier modulated signals and its application for signal detection. EURASIP Journal on Advances in Signal Processing, 2010, 2001(1): 1-14.
  • 3Bouzegzi A, Ciblat P, and Jallon P. New algorithm for blind recognition of OFDM based systems. Signal Processing, 2010, 90(3): 900-913.
  • 4Fu Hai-tao, et al.. Modulation classification based on cyclic spectral features for co-channel time-frequency over-lapped two-signal. Pacific-Asia Communications and Systems Conference on Circuits, Chengdu, China, 2009: 31-34.
  • 5Gardner W A. The spectral correlation theory of cyclostationary time-series. Signal Processing, 1986, 11(1): 13-36.
  • 6Roberts R S, Brown W A, and Loomis H H. Computationally efficient algorithms for cyclic spectral analysis. IEEE Transactions on Signal Processing Magazine, 1991, 8(2): 38-49.
  • 7Gardner W A, et al.. Cyclostationarity in Communications and Signal Processing. New York: IEEE PRESS, 1995: 455-489.
  • 8Gardner W A and Roberts R S. One-bit spectral- corrlation algorithms. IEEE Transactions on Signal Processing, 1993, 41(1): 423-426.
  • 9Dandawate A V and Giannakis G B. Nonparametric polyspectral estimators for kth-order (almost) cyclostationary processes. IEEE Transactions on Information Theory, 1994, 40(1): 67-84.
  • 10Antoni J. Cyclic spectral analysis in practice. Mechanical Systems and Signal Processing, 2007, 21(2): 597-630.

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部