期刊文献+

具带限反馈的时滞系统的Hopf分支分析 被引量:3

Hopf bifurcations in time-delay systems with band-limited feedback
下载PDF
导出
摘要 具反馈的非线性装置中不可避免地带有时滞,时滞和反馈控制参数的变化对系统的动力学性质会产生一定影响.研究了具带限反馈时滞系统中滞量和控制参数对稳定性和Hopf分支性质所起的作用.通过分析系统线性部分相应特征方程,发现当控制参数和滞量变化时,系统的拓扑结构会发生变化,并且当穿过一系列临界值时会发生Hopf分支.应用中心流形定理和Hassard规范型理论,得到了判断Hopf分支方向和分支周期解稳定性的计算公式.最后,给出了几个算例,其数值模拟结果与理论分析结果一致.可见,通过调整时滞和反馈参数的大小可以实现对系统动力学行为的控制. To discuss the effects of parameter change of time-delay and feedback control on the dynamics of a nonlinear device with feedback, the stability and Hopf bifurcation analyses on the role played by delay and control parameter in a time-delay system with band-limited feedback were investigated. By analyzing the associated characteristic equations, it is found that the control parameter and delay can qualitatively change the dynamics, and the Hopf bifurcation occurs when the parameters pass through a sequence of critical values. The stability and direction of Hopf bifurcation are determined by applying the Hassard normal form theory and the center manifold theorem. Results of some numerical simulations on Hopf bifurcation agree well with the theoretical results, which means that the system control can be realized by adjusting the magnitude of time delay and feedback gain.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2008年第8期1273-1278,共6页 Journal of Harbin Institute of Technology
基金 国家自然科学基金资助项目(10771045) 哈尔滨工业大学理学研究基金资助项目(HITC2000704)
关键词 带限反馈 时滞 HOPF分支 规范型 band-limited feedback time-delay Hopf bifurcation normal form
  • 相关文献

参考文献5

  • 1ILLING L, GAUTHIER D J. Hopf bifurcations in timelay systems with band-limited feedback[J].Physica D, 2005, 210(3 -4) : 181 -202.
  • 2WEI J J, RUAN S G. Stability and global Hopf bifurcation for neutral differential equations [J]. Acta Mathematics Sinica, 2002, 45( 1 ) : 93 - 104.
  • 3RUAN S G, WEI J J. On the zeros of transcendental functions with applications to stability of delay differential equations with two delays [ J ]. Dynamics of Continuous. Discrete and Impulsive Systems A: Mathematical Analysis, 2003, 10(6): 863-874.
  • 4HASSARD B, KAZARINOFF B N, WAN Y H. Theory and application of Hopf bifurcation [ M ]. Cambridge: Cambridge University Press, 1981.
  • 5WEI J J, JIANG W H. Stability and bifurcation analysis in Van der Pal' s oscillator with delayed feedback [ J ]. Jour nal of Sound and Vibration, 2005, 283(4) : 801 -819.

同被引文献23

  • 1王怀磊,王在华,胡海岩.HOPF BIFURCATION OF AN OSCILLATOR WITH QUADRATIC AND CUBIC NONLINEARITIES AND WITH DELAYED VELOCITY FEEDBACK[J].Acta Mechanica Sinica,2004,20(4):426-434. 被引量:6
  • 2钱长照,唐驾时.一类非自治时滞反馈系统的分岔控制[J].物理学报,2006,55(2):617-621. 被引量:22
  • 3张冬梅,李凤伟,徐涵.一类含参数激励和强迫激励的时滞反馈系统的分岔分析[J].徐州师范大学学报(自然科学版),2007,25(2):28-30. 被引量:3
  • 4XU Jian, CHUNG K W. Effects of time delayed posi- tion feedback on a van der Pol-Duffing oscillator [J]. Physica: D, 2003, 180: 17-39.
  • 5MA Suqi, LU Qishao, FENG Zhaosheng. Double Hopf bifurcation for van der Pol-Duffing oscillator with parametric delay feedback control [J]. Journal of Mathematical Analysis and Applications, 2008, 338 (2): 993-1007.
  • 6XU Jian, I.U Qishao. Hopf bifurcation of time-delay Lienard equations [J], International Journal of Bifur- cation and Chaos, 1999, 9(5) : 939-951.
  • 7QIAN Changzhao, TANG Jiashi. A time delay control for a nonlinear dynamic beam under moving load [J]. Journal of Sound and Vibration, 2008, 309: 1-8.
  • 8PYRAGAS K. Continuous control of chaos by selfcontrolling feedback [J]. Physics Letters: A, 1992, 170: 421-428.
  • 9ALI M S, HOU Z K, NOORI M N. Stability and per- formance of feedback control systems with time delays [J]. Computers and Structures, 1998, 66(2/3): 241- 248.
  • 10Fowler A C. Mathematical Models in the Applied Sci- ences [ M ]. Cambridge: Cambridge University Press, 1997 : 133-146.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部