期刊文献+

城市日用水量主影响因素粗集理论分析方法 被引量:5

Principal factor analysis method for daily urban water consumption based on rough set theory
下载PDF
导出
摘要 为克服传统粗糙集变精度算法和动态约简算法在城市日用水量主影响因素分析中的"伪"约简属性存在问题,利用权值累积评价因子的概念,提出新的城市日用水量属性约简求解算法.利用改进的属性约简算法对国内某城市日用水量观测系统的主影响因素进行分析讨论.实例分析表明:新的属性约简算法较大程度上克服了传统约简算法结果中"伪"约简属性的存在,实例城市的日用水量主影响因素为最高温度,相对湿度,阴晴量,星期量.预测验证结果也表明了所提出的主影响因素分析方法具有其合理性. It is difficult to find the true principal factors for daily urban water consumption based on the conventional rough set algorithm because there are usually different results of attribute reduction for time series with different lengths or the same length with different samples in the same information system. To solve this problem, an advanced algorithm based on weighting-coefficient cumulative estimation is put forward, and the weighting coefficient is the result of variable precision rough set algorithm. Principal factors for daily water consumption in Hangzhou were analyzed using the new algorithm. Results show that the proposed algorithm for attribute reduction is helpful for distinguishing the fake attribute from dyanamic reduction sets, and the principal factors affecting daily urban water consumption of Hangzhou city are the maximum air temperature, the relative humidity, the index of weather and the index of weekday.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2008年第8期1315-1318,共4页 Journal of Harbin Institute of Technology
基金 国家自然科学基金资助项目(50078048) 浙江省环境工程重中之重学科开放基金资助项目
关键词 日用水量 权值累积评价 属性约简算法 daily water consumption weighting-coefficient cumulative estimation reduction algorithm
  • 相关文献

参考文献9

  • 1ZHOU S L, MCMAHONT A, WALTON A, et al. Forecasting operational demand for an urban water supply zone [J]. Journal of Hydrology. 2002,259:189 -202.
  • 2NAHM E S, WOO K B. Prediction of the amount of water supplied in wide - area waterworks [ C ]//IECON, AachenGermany, 1998:365 - 368.
  • 3吕谋,赵洪宾,李红卫,王常明.城市日用水量预测的组合动态建模方法[J].给水排水,1997,23(11):25-27. 被引量:39
  • 4PAWLAK Z. Rought set [ J ]. International Journal of Copmputer and Information Science, 1982,11 (5) :341 - 356.
  • 5PAWLAK Z. Rought set theory and its applications to data analysis [J].Cybernetics and Systems, 1998, 29:661 - 688.
  • 6ZIARKO W. Variable precision rough set model[ J ]. Journal of Computer and System Sciences, 1993,46: 39 - 59.
  • 7BAZAN J G, SKOWRON A, SYNAK P. Dynamic reducts as a tool for extracting laws for decision tables [ C ]//Methodologies for Intelligence Systems. Berlin: Springer - Vetlag, 1994:346 - 355.
  • 8苗夺谦.Rough Set理论中连续属性的离散化方法[J].自动化学报,2001,27(3):296-302. 被引量:139
  • 9CAMPBELL C. Algorithmic approaches to training support vector machines : a survey [ C ]//Proceedings of European Symposium on Artificial Neural Networks. Bruges, Belgium,2000:8 - 17.

二级参考文献4

  • 1苗夺谦.Rough Set理论及其在机器学习中的应用研究(博士学位论文)[M].北京:中国科学院自动化研究所,1997..
  • 2Wang Jue,J Comput Sci Technol,1998年,13卷,2期,189页
  • 3苗夺谦,博士论文,1997年
  • 4Hu X H,Int J Computational Intelligence,1995年,11卷,2期,323页

共引文献176

同被引文献39

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部