期刊文献+

甲醇交流放电产物的光谱研究 被引量:4

Study on Decomposition Products of Methanol in AC Discharge by Spectroscopy
下载PDF
导出
摘要 利用浓度调制光谱技术测量甲醇交流放电分解产物的发射光谱,在300~700nm之间主要观测到激发态CO分子的B^1Σ^+—A^1Π Angstrom跃迁带、激发态CH分子430nm附近的A^2Δ—X^2Π跃迁带系和390nm附近的B^2Σ^-—X^2Π跃迁带系以及CHO(329.82nm),CH2O(369.8nm),CH3O(347.8nm),H(巴末耳线系)的发射谱线。通过光谱强度分析得到,CO激发态B^1Σ^+的振动温度达1638K,CH激发态A^2Δ的振动和转动温度分别为4200和1100K。改变放电电压和样品气压,测量CO,CH和H的发射光谱强度的变化关系,发现增加放电电压或减少样品气压,CO(B^1Σ^+)和H(656nm)的发射光谱强度比CH(A2Δ)发射光谱强度增加得快,从而进一步讨论了甲醇交流放电解离通道和产氢机制。 The intermediate decomposition products of methanol (CH3OH) in an AC discharge were diagnosticated via concentration modulation spectroscopy. Several main vibrational bands of CO Angstrom B^1Σ^+-A^1Π system, CH A^△2-X^2Π system at 430 nm and B^2Σ^--X^2Π at 390 nm, as well as CHO(329.82 nm), CH2O(369.8 nm), CH3O(347.8 nm) and Balmer series spectra of H atom were identified in the region between 300 and 670 nm. Furthermore, the dependences of the emission spectral intensities of the intermediate decomposition products on the discharge voltage and parent gas pressure were investigated in detail. The experiments indicated that the relative population ratio of CO(B^1Σ^+) and H increases with increasing discharge voltage more quickly than that of CH(A^2△). Several possible reaction passages were given and discussed. Additionally, the vibrational and rotational temperatures of CH(A^2△) were determined to be about 4 200 and 1 100 K respectively, and the vibrational temperatures of CO(B^1Σ^+) were determined to be about 2 500 K by analyzing the intensity distribution using LIFEBASE computer program. The decomposition mechanism of methanol in the discharge plasma was discussed as well.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2008年第9期1983-1986,共4页 Spectroscopy and Spectral Analysis
基金 国家自然科学基金项目(10574045 10434060) 上海市科委基础重大课题(04DZ14009)资助
关键词 交流等离子体放电 浓度调制光谱技术 甲醇分解 制氢 AC plasma discharge Concentration modulation spectroscopy Methanol decomposition H2 generation
  • 相关文献

参考文献17

二级参考文献45

  • 1国内碳一化学进展──甲烷化学及合成气化学[J].天然气化工—C1化学与化工,1995,20(3):44-49. 被引量:5
  • 2[2]Brauer I, Punset C, Boeuf J P. J. Appl. Phys., 1999, 85: 7569.
  • 3[3]Muller I, Punset C et al. IEEE Trans. on Plasma Science, 1999, 27: 20.
  • 4[4]Falkenstein Z, Coogan J J. J. Phys. D: Appl. Phys., 1997, 30: 817.
  • 5[5]Ammelt E, Schweng D et al. Phys. Lett. A, 1993, 179: 348.
  • 6[6]Eliasson B, Kogelschatz U. IEEE Trans. on Plasma Science, 1991, 19: 309.
  • 7[7]Eliasson B, Hirth M et al. J. Phys. D: Appl. Phys., 1987, 20: 1421.
  • 8[14]Campbell H D et al. J. Quant. Spectrosc. Radiat. Transfer., 1969, 9: 461.
  • 9[16]Meiners H J. Quant. Spectrosc. Radiat. Transfer., 1969, 9: 1496, 1502.
  • 10[17]Murphy P. Journal of the Optical Society of America, 1968, 58(9): 1200.

共引文献58

同被引文献48

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部