期刊文献+

单元类型和尺寸对裂尖疲劳塑性数值模拟的影响研究 被引量:1

Influence of Element Type and Size on Finite Element Prediction of Crack Tip Plasticity
下载PDF
导出
摘要 本文采用Jiang-Sehitoglu循环塑性模型和多轴疲劳准则对紧凑拉伸式样裂尖的循环塑性变形、裂纹扩展速率和残余应力进行了有限元数值模拟,着重考察了单元的类型和最小单元尺寸对裂尖循环塑性和裂纹扩展速率的影响。紧凑拉伸试样的材料为1070钢,数值模拟采用了线性单元(四节点)和二次单元(八节点)两种单元,裂尖附近有限元单元的最小尺寸从0.007mm到0.24mm不等。文中将裂纹扩展速率的预测值与实验值进行了比较,通过对裂纹扩展速率的比较,确定在疲劳塑性分析时对单元类型和尺寸进行合理选取。 The Jiang and Sehitoglu cyclic plasticity model combined with the multiaxial fatigue criterion was implemented into the finite element elastic - plastic stress analysis for the simulations of cyclic plasticity, crack growth and residual stress near the crack tip in a plane- stress compact specimen. The influence of element type and element size on the predicted cyclic plasticity near the crack tip and crack growth was studied. Material 1070 steel was used in the investigation. There are four node bilinear and eight node quadratic plane element used in the finite element simulations and the finest element size near the crack tip ranged from 0. 007mm to 0.24mm. The assessment of the influence of the element type and size was based upon the comparison of the predicted crack growth rate with experimental observation. Finally, the proper element type and element size in the fatigue plasticity analysis was introduced.
出处 《力学季刊》 CSCD 北大核心 2008年第3期349-355,共7页 Chinese Quarterly of Mechanics
基金 国家自然科学基金(10772115)
关键词 塑性模型 多轴疲劳准则 裂纹扩展 塑性变形 残余应力 cyclic plasticity model multiaxial fatigue criterion crack growth plastic deformation residual stress
  • 相关文献

参考文献11

  • 1倪向贵,李新亮,王秀喜.疲劳裂纹扩展规律Paris公式的一般修正及应用[J].压力容器,2006,23(12):8-15. 被引量:40
  • 2索斌,宋欣,张嘉振.拉压载荷对疲劳裂纹扩展影响的有限元分析[J].机械工程师,2007(1):79-81. 被引量:7
  • 3李亚智,李学峰.疲劳裂纹闭合的数值模拟方法[J].机械科学与技术,2006,25(10):1233-1237. 被引量:10
  • 4Jiang Y Y,Feng M L. A new approach to predicting fatigue crack growth[C]. Fracture Methodologies and Manufacturing Process. July 25 - 29,2004, San Diego, California, PVP2004,2297 : 23 - 31.
  • 5Jiang Y Y, Feng M L,Ding F. A reexamination of crack closure in crack growth[J]. International Journal of Plasticity,2005, 21 : 1720 - 1740.
  • 6Vasudeven A K,Sadananda K,Louat N. A review of crack closure, fatigue crack threshold and related phenomena[J]. Materials Science and Engineering A, 1994,188 : 1 - 22.
  • 7Jiang Y Y,Sehitoglu H. Modeling of cyclic ratchetting plasticity: Part I-Development of constitutive equations[J]. ASME Journal of Applied Mechanics, 1996,63 : 720 - 725.
  • 8Jiang Y Y,Sehitoglu H. Modeling of cyclic ratchetting plasticity.. Part II-Implement of the new model and comparison of theory with experiments[J]. ASME Journal of Applied Mechanics, 1996,63 : 726 - 733.
  • 9王雷,王德俊.多轴随机载荷下断裂平面的确定方法[J].机械工程学报,2003,39(3):90-93. 被引量:3
  • 10Jiang Y Y. A fatigue criterion for general multiaxial loading [J]. Fatigue & Fracture of Engineering Materials and Structures,2000,23 : 19 - 32.

二级参考文献51

共引文献55

同被引文献14

  • 1庄力健,高增梁,王效贵,陈冰冰,陈学东,Y.Jiang.16MnR钢在不同应力比下的疲劳裂纹扩展的试验研究及模拟[J].压力容器,2007,24(3):1-7. 被引量:13
  • 2Elber W. Fatigue crack closure under cyclic tension [J]. Engineering Fracttre Mechanics, 1970, 2: 37--45.
  • 3Elber W. The significance of fatigue crack closure [M]. Damage Tolerance in Aircraft Structures, ASTM STP 486 1971: 230--242.
  • 4Sehitoglu H, Gall K, Garcia A. Recent advances in fatigue crack growth modeling [J]. International Journal of Fracture, 1996, 80(2): 165-- 192.
  • 5McClung R C, Sehitoglu H. On the finite element analysis of fatigue crack closure-1. Basic modelling issues [J]. Engineering Fracture Mechanics, 1989, 33: 237--252.
  • 6Jiang Y, Feng M L, Ding F. A reexamination of plasticity-induced crack closure in fatigue crack propagation [J]. International Journal of Plasticity, 2005, 21(9): 1720-- 1740.
  • 7Lee S Y, Liaw P K, Choo H, Rogge R B. A study on fatigue crack growth behavior subjected to a single tensile overload Part I. An overload-induced transient crack growth micromechanism [J]. Acta Materialia, 2011, 59:485--494.
  • 8Lee S Y, Choo H, Liaw P K, An K, Hubbard C R. A study on fatigue crack growth behavior subjected to a single tensile overload Part II. Transfer of stress concentration and its role in overload-induced transient crack growth [J] Acta Materialia, 2011, 59: 495--502.
  • 9Wang X G Gao Z L, Zhao T W, Jiang Y. An experimental study of the crack growth behavior of 16MnR pressure vessel steel [J]. Journal of Pressure Vessel Technology, 2009, 131:021401--021409.
  • 10Jiang Y, Sehitoglu H. Modeling of cyclic ratcheting plasticity, Part I: Development of constitutive relations [J] ASME Journal of Applied Mechanics, 1996, 63(3): 720-- 725.

引证文献1

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部