期刊文献+

激光脉冲加热的二维广义热弹性问题研究 被引量:2

Study on Two-dimensional Generalized Thermoelastic Problem under Pulsed Laser Heating
下载PDF
导出
摘要 基于L-S广义热弹性理论,研究了半无限大板局部受到激光脉冲加热时的广义热弹性问题。为避免常规积分变换方法求解带来的精度丢失,采用有限元法直接在时间域进行求解,得到了激光脉冲加热时板中的温度、位移及应力的变化规律。结果表明,直接求解方法可以准确描述热在介质中以有限的速度传播,同时发现,激光脉冲加热过后,结构的最高温度随着时间的推移逐渐降低,且最高温度的位置总在热波波前附近,此处的应力也明显高于其他区域。 A generalized thermoelasticity problem for semi-infinite plane locally induced by pulsed laser heating was studied by adopting L-S generalized thermoelasticity. In order to avoid the toss of precision in general integral transformation method, the finite element control equations were solved directly in the time domain. The temperature distributions as well as displacement and stress distributions were obtained and represented graphically under pulsed laser heating in semi-infinite plane. The results show that the present method is an effective and exact numerical analysis method for the generalized thermoelasticity problem, and the maximum temperature on the structure always located near the thermal wave front and reduced gradually alone with time process, the stress near the thermal wave front is also higher than other region.
出处 《力学季刊》 CSCD 北大核心 2008年第3期371-377,共7页 Chinese Quarterly of Mechanics
关键词 广义热弹性理论 有限元方法 热松弛时间 L-S理论 激光脉冲加热 generalized thermoelasticity theory finite element method thermal relaxation time L-S the-ory pulsed laser heating
  • 相关文献

参考文献1

二级参考文献24

  • 1Zhu, X., Vileneuve, D.M., Naumov, A.Y., Nikumb, S,, Korkum,P.B.: Experimental study of drilling sub-10μm holes in thin metal foils with femtosecond laser pulses. Appl. Surface Sci. 152, 138-148 (1999).
  • 2Bonello, B., Perrin, B., Romatet, E., Jeannet, J.C.: Application of the picosecond ultrasonic technique to the study of the elastic and time-resolved thermal properties of materials. Ultrasonics 35,223-231 (1999).
  • 3Hostetler, J.L., Smith, A.N., Norris, EM.: Simultaneous measurement of thermophysical and mechanical properties of thin film. Int.J. Thermophys 19, 569-577 (1998).
  • 4Lord, H., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15, 299-309 (1967).
  • 5Dhaliwal, R., Sherief,H.: Generalized thermoelasticity for anisotropic media, Q. Appl. Math. 33, 1-8 (1980).
  • 6Green, A.E., Lindsay, K.E.: Thermoelasticiiy. J. Elasticity 2, 1-7(1972).
  • 7Erbayl S., Suhubi, S.: Longitudinal wave propagation in generalized thermoelastic cylinder. J. Thermal Stresses 9, 279-295 (1986).
  • 8Sherief, H.: A thermo-mechanical shock problem for thermoelasticity with two relaxation times. Int. J . Eng. Sci. 32, 313-325(1994).
  • 9Sherief, H.: State space approach to thermoelasticity with two relaxation times. Int J. Eng. Sci, 31, 117-1189 (1993).
  • 10Nowinski, J.: Theory of Thermoelasticity with Applications.Sijthoff & Noordhoff International Publishers, Alphenaan den Rij,1978.

共引文献9

同被引文献13

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部