期刊文献+

改进的后退型最优正交匹配追踪图像重建方法 被引量:14

Image Reconstruction Based on Improved Backward Optimized Orthogonal Matching Pursuit Algorithm
下载PDF
导出
摘要 现有的正交匹配追踪(OMP)算法都是在给定迭代次数(待重建图像的稀疏度)的条件下重建,这使其需要通过非常多的线性测量来保证精确重建.为此,文中提出一种改进的后退型最优OMP方法:首先利用最优正交匹配追踪(OOMP)算法在迭代过程中通过最优的正交化性来约束原子的选择,以保证原子的选择在最小化当前冗余误差的意义下最优;然后将稀疏度作为适应性迭代次数的标准,给出一种非常简单的原子选择机制来对前面得到的迭代结果进行后处理,并向后剔除其中多余的原子,从而获得精确重建.模拟信号和真实图像实验结果表明,与OMP算法相比,采用改进算法可以获得精确重建并大大降低对测量数目的要求. As the existing orthogonal matching pursuit (OMP) algorithms acquire the reconstruction with given number of iterations, i.e. given sparsity level of the image to be reconstructed, many linear measurements are needed to ensure the reconstruction accuracy. In order to reduce the number of linear measurements, an improved backward-optimized OMP algorithm is presented, in which an optimized orthogonal matching pursuit (OOMP) algorithm is adopted to restrict the selection of atoms based on the optimized orthogonality in the iteration process, thus optimizing the selection of atoms with a minimum current residual error. The sparsity level is then taken as the standard of the adaptive iteration number, and a very simple principle of atom selection is proposed to post-process the iteration results, thus backward eliminating the superfluous atoms and acquiring exact reconstruction. Simulated and experimental results indicate that, as compared with the existing OMP algorithms, the proposed algorithm helps to acquire the reconstruction with higher accuracy and fewer measurements.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第8期23-27,共5页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(60603083 60473102)
关键词 图像重建 正交匹配追踪 可压缩传感 冗余误差 image reconstruction orthogonal matching pursuit compressible sensing residual error
  • 相关文献

参考文献10

  • 1Donoho D. Compressed sensing [J]. IEEE Trans Infoim Theory, 2006,52(4) : 1289-1306.
  • 2Candes E J, Romberg J, Tao T. Signal recovery from incomplete and inaccurate measurements [ J ]. Comm Pure Appl Math ,2005,59 ( 8 ) : 1 207-1 223.
  • 3尹忠科,王建英,邵君.基于原子库结构特性的信号稀疏分解[J].西南交通大学学报,2005,40(2):173-178. 被引量:36
  • 4朱近,夏德深,王平安.基于BPNN局部位移场拟合的心脏形变计算模型[J].计算机研究与发展,2005,42(12):2143-2148. 被引量:3
  • 5沃焱,韩国强.基于小波变换和视觉感知特性的盲水印算法[J].华南理工大学学报(自然科学版),2005,33(4):29-33. 被引量:5
  • 6Candes E J,Tao T. Decoding by linear Programming [J]. IEEE Trans Inform Theory,2005,51 (12) :4203-4215.
  • 7Duarte M F, Wakin M B, Baraniuk R G. Fast reconstruction of piecewise smooth signals from random projections [ C]//Proc of Workshop on Signal Processing with Adaptative Sparse Structured Representations. Rennes: [ s. n. ] ,2005.
  • 8Tropp J, Gilbert A. Signal recovery from partial information via orthogonal matching pursuit [ J ]. IEEE Trans Inform Theory ,2007,53 ( 12 ) :4566-4666.
  • 9Romberg J K. Sparse signal recovery via 11 minimization [ C]//Conf on Information Sciences and Systems. Princeton : [ s. n. ] ,2006:213-215.
  • 10Rebollo-Neira L, Lowe D. Optimised orthogonal matching pursuit approach [ J ]. IEEE Signal Processing Letters, 2002,9(4) : 137-140.

二级参考文献29

  • 1Mallat S, Zhang Z. Matching pursuit with time-frequency dictionaries[J]. IEEE Trans on Signal Processing, 1993, 41(12) : 3 397-3 415.
  • 2Arthur P L, Philipos C L. Voiced/unvoiced speech discrimination in noise using gabor atomic decomposition[A]. Proc of IEEE ICASSP[C]. Hong Kong: IEEE Press: 2003,I(4). 820-828.
  • 3Safranek R J, Johnston J D. A perceptually tuned sub band image coder with image dependent quantization and post-quantization data compression [ A ]. International Conference on Acoustics, Speech, and Signal Processing [C]. New York: IEEE, 1989.1945 - 1948.
  • 4Waston A B, Yang G Y, Solomon J A. Visibility of wavelet qantization noise [J]. IEEE Trans on Image Processing,1997,6(8) :1 165 - 1 175.
  • 5Lewis A S, Knowles G. Image compression using the 2-D wavelet transform [ J ]. IEEE Trans on Image Processing, 1992,1 (4) :244 - 250.
  • 6Jayant N, Johnston J, Safranek R. Signal compression based on models of human perception [ J ]. Proceedings of the IEEE, 1993,81 (10): 1385 - 1422.
  • 7Podilchuk C I,Zeng W J. Image-adaptive watermarking using visual models [ J]. IEEE Journal on Selected Areas in Communications, 1998,6 ( 4 ) :525 - 539.
  • 8Hsu C T,Wu J L. Image hidden digital watermarks in images [ J]. IEEE Trans on Image Processing, 1999,8 ( 1 ) :58 - 68.
  • 9M.A. Guttman, et al. Analysis of cardiac function from MR images. IEEE Computer Graphics and Applications, 1997, 17(1): 55-63.
  • 10B. Higgins. Overview of MR of the heart-1986. Amer. J.Roentgenol, 1986, 146(5): 907- 918.

共引文献40

同被引文献176

  • 1刘浩,尹忠科,王建英.正交匹配跟踪(OMP)算法的收敛性研究[J].微计算机信息,2008,24(3):209-210. 被引量:7
  • 2孙大陆,杨乐.基于OWTS的电缆局部放电检测技术应用[J].新疆电力技术,2012(1):8-10. 被引量:2
  • 3杨荣凯.XLPE电缆线路局部放电量指标的分析[J].高电压技术,2005,31(2):27-28. 被引量:11
  • 4陈果,廖晓峰.一种基于混沌映射的图像加密算法[J].计算机应用,2005,25(B12):121-123. 被引量:9
  • 5Donoho DL.Compressed sensing[J]. IEEE Transaction on Information Theory, 2006, 52(4): 1289-1306.
  • 6Donoho DL, Tsaig Y. Extensions of compressed sensing[J1. Signal Processing,2006, 86(3):533-548.
  • 7Candes E, Rombcrg J. Quantitative robust uncertainty principles and optimally sparse decompositions[J].Foundations of Computational Mathematics, 2006,6(2):227-254.
  • 8Candes E, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transaction on Information Theory,2006,52(2):489-509.
  • 9Candes E, Tao T. Near-optimal signal recovery from random projections: Universal encoding strategies? [J]. IEEE Transaction on Information Theory, 2006,52(12): 5406-5425.
  • 10Schnass K, Vandergheynst P. Dictionary preconditioning for greedy algorithms[J]. IEEE Transaction on Signal Process, 2008,56(5):1994-2002.

引证文献14

二级引证文献290

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部