期刊文献+

广义CH-DP方程的尖弧立波解

Peaked Solitary Wave Solution to Generalized CH-DP Equation
下载PDF
导出
摘要 研究了Camassa-Holm方程和Degasperis-Processi方程广义形式的尖孤立波解.运用微分方程定性理论和动力系统分支方法证明了这一类解的存在性,给出了解的显函数表达式,同时获得了光滑孤立波解的显函数表达式,推广了文献中的某些结果,解决了文献中的一个猜测. This paper investigates the peaked solitary wave solutions to the generalized forms of the Camassa-Holm equation and the Degasperis-Processi equation. By means of the qualitative theory of differential equations and the bifurcation method of dynamic systems, the existence of the peaked solitary wave solutions is proved, and the ex- plicit expressions of the peaked and the smooth solitary wave solutions are respectively given. Moreover, some resuits in the literature are extended and a conjecture is clarified.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第8期136-139,共4页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(10571062) 广东省自然科学基金资助项目(07006552)
关键词 广义CH-DP方程 分支方法 分支相图 尖孤立波解 generalized CH-DP equation bifurcation method bifurcation phase portrait peaked solitary wave solution
  • 相关文献

参考文献12

  • 1Camassa R, Holm D D. An integrable shallow water equation with peaked solitons [ J ]. Phys Rev Lett, 1993,71 (11) :1661-1664.
  • 2Liu Zheng-rong,Wang Rui-qi, Jing Zhu-jun. Peaked wave solutions of the Camassa-Holm equation [ J ]. Chaos, Solitons and Fractals ,2004,19( 1 ) :77-92.
  • 3Degasperis A, Processi M. Asymptotic integrability symmetry and perturbation theory [ M ]. Singapore : World Sci Publishing, 1999.
  • 4Lundmark H, Szmigielski J. Multi-peakon solutions of the Degasperis-Processi equation [ J ]. Inverse Problems, 2003,19 (6) : 1241-1245.
  • 5Wazwaz A W. Solitary wave solutions for modified forms of Degasperis-Proeessi and Camassa-Holm equations [ J ]. Phys Lett A ,2006,352 ( 6 ) :500-504.
  • 6刘正荣,Ali Mohammed Kayed.分支方法与广义CH方程的显式周期波解[J].华南理工大学学报(自然科学版),2007,35(10):227-232. 被引量:6
  • 7Liu Zheng-rong, Qian Ti-fei. Peakons of the Camassa-Holm equation [ J ]. Appl Math Modeling, 2002,26 ( 3 ) : 473-480.
  • 8Boyd J P. Peakons and coshoidal waves: travelling wave solutions of the Camassa-Hohn equation [ J ]. Appl Math Comput, 1997,81 (23) : 173-187.
  • 9Shen Jian-wei, Xu Wei. Bifurcations of smooth and non-smooth travelling wave solutons in the generalized Camassa-Holm equation [ J ]. Chaos, Solitons and Fractals, 2005,26(4) :1 149-1 162.
  • 10Boyd J P. Near-coner waves of the Camassa-Hohn equation [J]. Phys Lett A ,2005,336(4/5) :342-348.

二级参考文献1

  • 1Min-ying TANG & Wen-ling ZHANG School of Mathematical Sciences and Center for Nonlinear Science Studies, South China University of Technology, Guangzhou 510640, China ( Department of Mathematics and Physics, National Natural Science Foundation of China, Beijing 100085, China.Four types of bounded wave solutions of CH-■ equation[J].Science China Mathematics,2007,50(1):132-152. 被引量:8

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部