期刊文献+

可压缩Navier-Stokes方程行波解的渐近稳定性

Asymptotic stability of solutions for one-dimensional compressible Navier-Stokes equations
下载PDF
导出
摘要 研究了一维黏性可压缩Navier-Stokes方程组,给出了在小扰动条件下冲击波解的渐近稳定性。考虑在小的初始扰动下黏性冲击波解的叠加,通过局部解的存在唯一性分析和先验估计,得到此时的黏性冲击波解是渐近稳定的。证明通过能量估计方法给出。 One-dimensional compressible Navier-Stokes equations have been investigated, and the asymptotic stability of the shock wave has been established under conditions of small perturbation. A superposition of the shock wave has been derived under conditions where the initial disturbance is sufficiently small. By the means of existenee and uniqueness of the local solution and the priori estimates, the superposition of the shock wave is shown to have asymptotic stability. The proof is based on the elementary energy method.
出处 《北京化工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第5期107-111,共5页 Journal of Beijing University of Chemical Technology(Natural Science Edition)
基金 国家自然科学基金(10771087)
关键词 可压缩NAVIER-STOKES方程 冲击波 渐近稳定性 能量估计 compressible Navier-Stokes equations shock wave asymptotic stability energy method
  • 相关文献

参考文献7

  • 1Matsumura A, Nishihara K. On the stability of travelling wave solutions of a one-dimensional model system for compressible viscous gas[J ]. Japan J Appl Math, 1985, 2:17-25.
  • 2Kawashima S, Matsumura A. Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion [ J ]. Commun Math Phys, 1985, 101:97 - 127.
  • 3Matsumura A, Nishida T. The intial value problem for the equations of motion of viscous and heateonductive gases[J]. Math Kyoto Univ, 1980, 20(1) :67- 104.
  • 4Hoff D. Globalsolutions of the Navier-Stokes equations for multidimensional compressible flow with discontinuous initial data[J ]. Journal of Differential Equations, 1995, 120:215 - 254.
  • 5Xiao-ding ShiDepartment of Mathematics and Computer Science, School of Science, Beijing University of Chemical Technology, Beijing 100029, China.On the Stability of Rarefaction Wave Solutions for Viscous p-system with Boundary Effect[J].Acta Mathematicae Applicatae Sinica,2003,19(2):341-352. 被引量:6
  • 6Huang Feimin, Matsumura A, Shi Xiaoding. Viscous shock wave and boundary layer solution to an inflow problem for compressible viscous gas[J ]. Com-mun Math Phys, 2003, 239 : 261 - 285.
  • 7陈亚洲,周培培,施小丁.一维黏性可压缩流体冲击波解的渐近稳定性[J].北京化工大学学报(自然科学版),2007,34(5):557-560. 被引量:4

二级参考文献21

  • 1Huang, F.M., Matsumura, A., Shi, X.D. Viscous shock wave and boundary layer solution to an infolw problem for compressible viscous gas. Commun. Math. Phys., to appear.
  • 2Kawashima, S., Nikkuni, Y. Stability of stationary solutions to the half-space problem for the discrete Boltzmann equation with multiple collision. Kyushu J. Math., 54(2): 233-255 (2000).
  • 3Kawashima, S., Nishibata, S. Stability of stationary waves for compressible Navier-Stokes equations in the half space. Preprint.
  • 4Liu, T.P. Nonlinear stability of shock wave for viscous conservation laws. Mem. Amer. Math. Soc., 56,1985.
  • 5Liu, T.P., Matsumura, A., Nishihara, K. Behaviors of solutions for the Burgers equation with boundary corresponding to rarefaction waves. SIAM J. Math. Anal. 29:293-308 (1998).
  • 6Matsumura, A. Inflow and outflow problems in the half space for a one-dimensional isentropic model system of compressible viscous gas. Proceedings of IMS Conference on Differential Equations from Mechnics, Hong Kong, 1999, to appear.
  • 7Matsumura, A., Mei, M. Convergence to travelling fronts of solutions of the p-system with viscosity in the presence of a boundary. Arch. Rat. Mech. Anal., 146:1-22 (1999).
  • 8Matsumura, A, Nishihara, K. On the stability of traveling wave solutions of a one-dimensional model system for compressible viscous gas. Japan J. Appl. Math., 2:17-25 (1985).
  • 9Matsumura, A., Nishihara, K. Asymptotics toward the rarefaction wave of the solutions of a one-dimensional model system for compressible viscous gas. dapan d. Appl. Math., 3:1-13 (1986).
  • 10Matsumura, A., Nishihara, K. Global stability of the rarefaction wave of a one-dimensional model system for compressible viscous gas. Commun. Math. Phys., 144:325-335 (1992).

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部