期刊文献+

基于Kohonen网络和OLS算法的RBFNN中心选择方法

RBFNN Center Selection Method Based on the Kohonen Network and OLS Algorithm
下载PDF
导出
摘要 提出了一种优化选择径向基神经网络数据中心的算法,该算法结合了Kohonen网络的模式分类能力,将初步分类结果用作RBFNN的初始数据中心,然后采用OLS算法进行优化,对比仿真实验表明该算法效果比单独使用OLS算法生成的RBFNN性能更好。 This article proposes a kind of algorithm of optimized selection radial basis function neural network data.Combining the pattern classification ability of the Kohonen network,this algorithm used the initial classification results as the initial data center of RBFNN,and then optimized the OLS algorithm.The simulation experiments showed that this algorithm had better effect than that of using OLS algorithm only.
作者 郑明文
出处 《微型电脑应用》 2008年第9期10-13,4,共4页 Microcomputer Applications
关键词 RBFNN 径向基中心 KOHONEN网络 OLS方法 Radial basis function neural network Basis center Kohonen network Orthogonal Least Squares Method (OLS)
  • 相关文献

参考文献7

  • 1魏海坤,李奇,宋文忠.梯度算法下RBF网的参数变化动态[J].控制理论与应用,2007,24(3):356-360. 被引量:13
  • 2Zhong - Qiu Zhao,De-Shuang Huang. A mended hybrid learning algorithm for radial basis function neural networks to improve generalization capability [ J ]. Applied Mathematical Modelling, 2007, 31: 1271-1281.
  • 3J'urgen Paetz. Reducing the number of neurons in radial basis function networks with dynamic decay adjustment [J ] . Neurocomputing,2004, 62:79- 91.
  • 4Nabil benoudjit, Michel verleysen. On the Kernel Widths in Radial- Basis Function Networks [ J ]. Neural Processing Letters .2003, 18: 139-154.
  • 5Guyon, I., Elisseeff, A. An Introduction to Variable and Feature Selection[ J ]. Journal of Machine Learning Research. 2003,3:1157-1182.
  • 6S.Chen,S.A.Billings,W.Luo.Orthogonal least squares methods and their application to non-linear system identicfication [ J ]. Int.J. Contr, 1989, 50 (5): 1876-1896.
  • 7陈德军,胡华成,周祖德.基于径向基函数的混合神经网络模型研究[J].武汉理工大学学报,2007,29(2):122-125. 被引量:11

二级参考文献14

  • 1魏海坤,宋文忠,李奇.非线性系统RBF网在线建模的资源优化网络方法[J].自动化学报,2005,31(6):970-974. 被引量:6
  • 2Wang L X,Mendel J M.Fuzzy Basis Functions,Universal Approximation,and Orthogonal Least-squares Learning[J].Neural Networks,IEEE Transactions,1992,3(5):807-814.
  • 3Chen S,Cowan C F N,Grant P M.Orthogonal Least Squares Learning Algorithm for Radial Basis Function Networks[J].Neural Networks,IEEE Transactions,1991,2(2):302-309.
  • 4Breiman L.Classification and Regression Trees[M].Belmont:Wadsworth International Group,1984.
  • 5Friedman J H.Multivariate Adaptive Regression Splines[J].The Annals of Statistics,1991,19(2):1-141.
  • 6Quinlan J R.Induction of Decision Trees[J].Machine Learning,1986,1(3):81-106.
  • 7HAYKIN S.Neural Networks:A Comprehensive Foundation[M].New York,NY:Prentice Hall,1997.
  • 8KARAYIANNIS N,RANDOLPH-GIPS M.On the construction and training of reformulated radial basis function neural networks[J].IEEE Trans Neural Networks,2003,14(4):835-846.
  • 9PLATT J.A resource-allocating network for function interpolation[J].Neural Computation,1991,3(2):213-225.
  • 10YINGWEI L,SUNDARARAJAN N,SARATCHANDRAN P.A sequential learning scheme for function approximation and using minimal radial basis neural networks[J].Neural Computation,1997,9(2):1-18.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部