期刊文献+

时域有限差分并行算法中的吸收边界研究 被引量:3

Study on Absorbing boundary condition in parallel FDTD algorithm
下载PDF
导出
摘要 针对并行FDTD中以二阶Mur、单轴各向异性介质完全匹配层(UPML)和卷积形式完全匹配层(CPML)为吸收边界的并行化处理方法进行论述。用金属球的远区散射计算,并与Mie级数解对比,验证了并行计算中三种吸收边界的吸收效果。最后给出UPML吸收边界FDTD计算内存估计公式,并以电大尺寸目标卫星模型为例对并行性能进行了测试。由于并行中通信时间影响并行加速比和效率,UPML和CPML吸收边界的相邻子域数据通信方式与FDTD迭代式相同,而Mur吸收边界的相邻子域间数据通信方式与FDTD完全不同,它的并行性能要低于前两者。电大尺寸卫星目标模型的多机并行计算测试结果表明,UPML和CPML并行FDTD计算的并行加速比及其效率整体上高于Mur,其中CPML吸收条件下的效率达到90%以上。 The parallel processing method taking the second-order Mur, the uniaxial anisotropic perfectly matched layer (UPML) and the convolutional perfectly matched layer (CPML) as the absorbing boundary conditions (ABC) respectively in finite difference are analyzed. The efficiency obtained from these ABCs is verified through computing the scattered field by a metallic sphere, and a comparison with the Mie's Series solution is made. The memory estimate formula of a three-dimensional (3D) parallel FDTD algorithm using UPML ABC is also provided. The parallel performance is tested by taking the model of a targe-size target satellit as an example. The data communication between sub-domains in UPML and CPML is of the same manner as in the FDTD iterative scheme. However, the way of data communication between sub-domains in Mur's ABC is quite different from the way in FDTD that increases the complexity of programming. The communication among sub-domains in parallel computing influences strongly the parallel performance, hence that to Mur's ABC is inferior to UPML and CPML. The calculated result to large-size satellite model by multiple computers also shows the speedup factor and efficiency for using UPML and CPML are superior to using Mur's ABC. Furthermore, the efficiencies for CPML are all above 90%.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2008年第9期1636-1640,共5页 Systems Engineering and Electronics
基金 国家自然科学基金资助课题(40674060)
关键词 并行时域有限差分 吸收边界 消息传递接口 加速比 parallel FDTD absorbing boundary message passing interface (MPI) speedup factor
  • 相关文献

参考文献11

  • 1Yee K S. Numerical solution of initial boundary value problems involving Maxwell equations in isotropie media [J]. IEEE Trans. Antennas Propagation, 1966, 14(3) : 302 - 307.
  • 2Guiffaut C, Mahdjoubi K. A parallel FDTD algorithm using the MPI library[J]. IEEE Ant. Prop. Mag., 2001, 43(2):94 - 103.
  • 3Luca C, Paolo P, Luciano T, Human exposure to the near field of radio base antennas-A full-wave solution using parallel FDTD [J]. IEEE Trans. Microwave Theory Tech. , 2003, 51 (3): 935 - 940.
  • 4葛德彪,杨利霞.各向异性介质FDTD分析及其并行计算[J].系统工程与电子技术,2006,28(4):483-485. 被引量:4
  • 5郑奎松,葛德彪,葛宁.三维电磁散射的网络并行FDTD计算和加速比分析[J].电波科学学报,2004,19(6):767-771. 被引量:13
  • 6闫玉波,葛宁,郑美艳,葛德彪,田春明.网络并行FDTD方法分析电大目标电磁散射[J].电子学报,2003,31(6):821-824. 被引量:24
  • 7薛正辉,杨仕明,高本庆,张泽杰.FDTD算法的网络并行运算实现[J].电子学报,2003,31(12):1839-1843. 被引量:29
  • 8Mur G. Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations [J]. IEEE Trans. Electromagn. Compat. , 1981, 23(4): 377- 382.
  • 9Berenger J P. Perfectly matched layer for the FDTD solution of wave-structure interaction problem[J].IEEE Trans. Antennas Propagat., 1996, 44 (1): 110-117.
  • 10Taflove A, Susan C Hagness. Computational electrodynamics: the finite-difference time-domain method[M]. Norwood, MA.. Artech House, 2005. 297 - 313.

二级参考文献20

  • 1郑奎松,葛德彪,魏兵.导弹目标的FDTD建模与RCS计算[J].系统工程与电子技术,2004,26(7):896-899. 被引量:12
  • 2郑奎松,葛德彪,葛宁.三维电磁散射的网络并行FDTD计算和加速比分析[J].电波科学学报,2004,19(6):767-771. 被引量:13
  • 3孙家旭 张林波.网络并行计算与分布式编程环境[M].北京:科学出版社,1996..
  • 4薛正辉 高本庆.空间分割的FDTD方法[A]..微波电磁兼容第四届全国学术会议论文集[C].中国:微波电磁兼容学会,1998..
  • 5王长青 祝西里.电磁场计算中的是与有限差分法[M].北京:北京大学出版社,1994..
  • 6Yee K S. Numerical solution of initial boundary value problems involving Maxwell equations in isotropic media [ J ]. IEEE Trans Antennas Propagat, 1966, AP- 14(3) : 302 - 307.
  • 7Guiffaut C, Mahdjoubi K. A parallel FDTD algorithm using the MPi library [ J ]. IEEE Antennas and Propagation Magazine, 2001, AP-43(2) :94- 103.
  • 8Geist A, et al. PVM: Parallel Virtual Machine---A Users' Guide and Tutorial for Networked Parallel Computing [ M ]. Cambridge, Massachusetts: MIT Press, 1994.
  • 9Schneider J,Hudson S.The finite-difference time-domain method applied to anisotropic material[J].IEEE Trans.Antenna and Propagate,1993,AP-41(7):994-999.
  • 10Schneider J,Luebbers R.Application of FDTD to anisotropic materials[J].IEEE AP-S International Symposium Digest,1994,3:1422-1425.

共引文献46

同被引文献18

  • 1郑奎松,葛德彪,魏兵.导弹目标的FDTD建模与RCS计算[J].系统工程与电子技术,2004,26(7):896-899. 被引量:12
  • 2周国祥,程萍,蒋经国,杨明武.直角坐标系下非均匀FDTD网格生成系统[J].微波学报,2005,21(2):56-59. 被引量:8
  • 3Wang Hui, Huang Zhixiang, Wu Xianliang, et al. Perfect plane wave injection into 3D FDTD (2,4) scheme [ C ]//Cross Strait Quad-Regional Radio Science and Wireless Technology Confer- ence (CSQRWC) Volume 1. Harbin : IEEE ,2011:40-43.
  • 4Hadi M F. A versatile split-field 1-D propagator for perfect FDTD plane wave injection [ J ]. IEEE Transactions on Antennas and Propagation ,2009,57 (9) :2691-2697.
  • 5Huang Z, Pan G, Pan H K. Perfect plane wave injection for Crank-Nicholson time-domain method [ J ]. Microwaves, Anten- nas & Propagation, IET, 2010,4 ( 11 ) : 1855 - 1862.
  • 6Jinjie Liu,Moysey Brio,Jerome V. Moloney.Overlapping Yee FDTD Method on Nonorthogonal Grids[J]. Journal of Scientific Computing . 2009 (1)
  • 7Yee KS.Numerical solution of initial boundary value problems involving Maxwell equations in isotropic media. IEEE Transactions on Antennas and Propagation . 1966
  • 8Taflove,A.,Hagness,S.C. Computational Electrodynamics: The Finite-Difference Time-Domain Method . 2005
  • 9Simpson J J,,Heikes R P,Taflove A.FDTD modeling of a novel ELFradar for major oil deposits using a three-dimensional geodesic gridof the Earth-ionosphere waveguide. IEEE Transactions on An-tennas and Propagation . 2006
  • 10Berenger JP.A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics . 1994

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部