期刊文献+

小规模TSP边集裁剪策略研究 被引量:2

Accurate solving hybrid algorithm for small scale TSP
下载PDF
导出
摘要 由于旅行商问题的计算复杂性,随着问题规模的扩大,精确算法逐渐不能在较短的时间内得到或不能得到问题的全局最优解。通过对该类问题的高质量优化解与全局最优解之间关系的分析,基于概率统计原理建立了问题的简化初始边集,并在分支裁减法中应用了合理的动态上界调整,新建立的混合分支裁减法实现了对小规模旅行商问题的快速精确求解。 Owing to the computation complexity of traveling salesman problems accurate algorithms couldn't find a global optimal solution in relatively short time or couldn't find a global optimal solution at all along with the enlargement of problem scale. By analyzing the relationship between global optimal solutions and local optimal solutions, the method establishing initial cutting edge set for small scale TSP is put forward based on probability statistic principle. In the meanwhile, dynamic upbound adjustment is applied into the branch and cut algorithm. The global optimal solutions can be found for all of small scale traveling salesman problems by utilizing the new hybrid branch and cut algorithm.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2008年第9期1693-1696,共4页 Systems Engineering and Electronics
关键词 分支裁减法 旅行商问题 小规模 精确求解 混合算法 branch and cut traveling salesman problem small scale accurate computing hybrid algorithm
  • 相关文献

参考文献8

  • 1Johnson D S, Papadim It Riou C H, Yannakakis M. How easy is local search[J]. Journal of Computer and System Sciences, 1988, 37(1):79-100.
  • 2Papadimitriou C H, Yannakakis M. Optimization, approximation and complexity classes [J]. Journal of Computer and System Sciences, 1991, 43(3) :425 - 440.
  • 3Christine L V, Antonia J J. Estimating the Held-Karp lower bound for the geometric TSP [J]. European Journal of Operational Research, 1997. 102(1) : 157 - 175.
  • 4Miliotis P. Using cutting planes to solve the symmetric traveling salesman problem [J]. Mathematical Programming, 1978, 15, 177 - 188.
  • 5邹鹏,周智,陈国良,顾钧.求解TSP问题的多级归约算法[J].软件学报,2003,14(1):35-42. 被引量:60
  • 6Boese K. Cost versus distance in the traveling salesman problem [R]. Technical Report, TR - 950018, CS Department, UCLA , 1995.
  • 7University of Heidelberg. Traveling salesman problems library [DB/OL]. http: //www. iwr. uni-heidelberg. de/groups/comopt/software/TSPLIB95/, 1997 - 08 - 08/2006 - 11 - 07.
  • 8David A, Robert B, Vasek C. Coneorde network optimization package [CP/OL]. http: //www. tsp. gatech.edu/concorde/ downloads/codes/src/co031219.tgz, 1997 - 08 - 08/2006 - 11 -07.

二级参考文献16

  • 1[1]Garey MR, Johnson DS. Computers and Intractability: a Guide to the Theory of NP-Completeness. San Francisco: W.H. Freeman, 1979.
  • 2[2]Johnson DS, McGeoch LA. The traveling salesman problem: a case study in local optimization. In: Aarts EH, Lenstra JK, eds. Local Search in Combinatorial Optimization. New York: John Wiley and Sons, 1996.
  • 3[3]Jünger M, Reinelt G, Rinaldi G. The traveling salesman problem. In: Ball M, Magnanti T, Monma CL, Nemhauser G, eds. Handbook on Operations Research and Management Science: Networks North-Holland. 1995. 225~330.
  • 4[4]Burkard RE, Deineko VG, Dal RV, et al. Well-Solvable special cases of the traveling salesman problem: a survey. SIAM Review, 1998,40(3):496~546.
  • 5[5]Clarke G, Wright JW. Scheduling of vehicles from a central depot to a number of delivery points. Operations Research, 1964,12: 568~581.
  • 6[6]Christofides N. Worst-Case analysis of a new heuristic for the traveling salesman problem. Technical Report, No.388, Pittsburgh, PA: Graduate School of Industrial Administration, Carnegie Mellon University, 1976.
  • 7[7]Kirkpatrick S, Gelatt CD, Vecchi MP. Optimization by simulated annealing. Science, 1983,220(4598):671~680.
  • 8[8]Holland JH. Adaptation in Natural and Artificial Systems: an Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. 2nd ed., Cambridge, MA: MIT Press, 1992.
  • 9[9]Croes GA. A method for solving traveling salesman problems. Operations Research, 1958,6:791~812.
  • 10[10]Lin S. Computer solutions to the traveling salesman problem. Bell System Technical Journal, 1965,44(10):2245~2269.

共引文献59

同被引文献21

  • 1RUSSELL R A. An effective heuristic for the m-tour traveling salesman problem with some side conditions[ J]. Operations Research, 1977,25(3) :517-524.
  • 2BEKTAS T. The multiple traveling salesman problem: an overview of formulations and solution procedures [ J ]. Omega, 2006,34 ( 3 ) : 209-219.
  • 3LIU Wei-min, LI Su-jian, ZHAO Fang-geng, et al. An ant colony optimization algorithm for the multiple travelling salesmen problem [ C ]//Proc of the 4th IEEE Conference on Industrial Electronics and Applications. 2009 : 1533-1537.
  • 4MASUTYI T A S, De CASTRO L N. A clustering approach based on artificial neural networks to solve routing problems [ C ]//Proc of the l I th IEEE International Conference on Computational Science and Engineering. Washington DC : IEEE Computer Society, 2008 : 285- 292.
  • 5NALLUSAMY R, DURAISWAMY K, DHANALAKSMI R, et al.Optimization of non-linear multiple travelling salesman problem using K-means clustering, shrink wrap algorithm and meta-heuristics[ J]. International Journal of Nonlinear Science,2009,8(4) :480-487.
  • 6NALLUSAMY R, DURAISWAMY K, DHANALAKSMI R, et al. Optimization of multiple vehicle routing problems using approximation algorithms[ J]. International Journal of Engineering Science and Technology ,2009,1 ( 3 ) : 129-135.
  • 7WANG Dong, WU Xiang-bin, MAO Xian-cheng, et al. Reducing initial edge set of traveling salesmen problems [ C ]//Proc of Intemational Conference on Machine Learning and Cybernetics. 2007:2333- 2338.
  • 8University of Heidelberg. Traveling salesman problems library [ CP/ OL ]. 1997-08-08 [ 2011-01 - 10]. http ://www. iwr. uni-heidelberg. de/groups/comopt/software/TSPLIB95/.
  • 9PAN Jun-jie, WANG Ding-wei. An ant colony optimization algorithm for multiple travelling salesman problem[ C ]//Proc of the 1 st International Conference on Innovative Computing, Information and Control. Washington DC : IEEE Computer Society,2006:210-213.
  • 10VALLIVAARA I. A team ant colony optimization algorithm for the multiple travelling salesmen problem with MinMax objective [ C ]// Proc of the 27th lASTED International Conference on Modelling, Identification and Control. Anaheim : ACTA Press,2008 : 387- 392.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部