期刊文献+

基于蚁群算法的多目标跟踪方法 被引量:5

New method for multi-target tracking using ant algorithm
下载PDF
导出
摘要 提出了一种新的基于蚁群算法的多目标跟踪方法。方法采用蚁群算法实现多目标跟踪中的数据关联,首先将多目标跟踪中的数据关联问题表示为具有约束条件的优化问题,用蚁群算法对该优化问题求解,得到的解即为最优关联。为验证该算法的有效性,在两种状态估计方法EKF(extended Kalman filter)和SIS(sequential im-portance sampling)的基础上进行了多目标跟踪实验,并且与传统的NN(nearest neighbor)方法进行了比较。在与SIS框架结合时,算法中采样粒子包括状态矢量和关联矢量,状态矢量通过序贯重要性重采样获得,关联矢量通过蚁群算法求得。实验结果表明,将蚁群算法融合进SIS算法进行多目标跟踪是有效的。 A method based on ACA(ant colony algorithm) is proposed for data association for multi-target tracking. Firstly, the data association problem is represented as a formulation of combinational optimization, then, ant algorithm is used to solve the optimization problem. SIS(sequential importance sampling) is introduced to combine with the proposed method to complete the multi-target tracking, where state vector is obtained by sampling from a distribution and association vector by ant algorithm with probability one, which decrease the uncertainty of the probabilistic method. The proposed method combined with EKF(extended Kalman filter) and SIS is compared with NN(nearest neighbor) respectively. Simulation results show that the proposed method is an effective way in the field of multi-target tracking.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2008年第9期1782-1784,共3页 Systems Engineering and Electronics
基金 总装备部预研项目资助课题
关键词 目标跟踪 数据关联 蚁群算法 信息素 target tracking data association ant colony algorithm pheromone
  • 相关文献

参考文献10

  • 1Doucet A, Godsill S, Andrieu C. On sequential monte carlo sampling methods for bayesian filtering[J]. Statistics and Computing, 2000(10): 197-208.
  • 2Anderson B, Moore J. Optimal filtering [M]. Englewood Cliffs, Prentice Hall, New Jersy, 1979.
  • 3Reid D. An algorithm for tracking multiple target[J].IEEE Trans. on Automat. Contr. , 1979, 24 (6) : 84 - 90.
  • 4Blackman S, Popoli R. Design and analysis of modern tracking systems[M]. Boston: Artech House, 1999.
  • 5Dorigo M, Gambardell L M. Ant colony system: a cooperative learningapproach to the traveling salesman problem[J]. IEEE Trans. on Evolutionary Computation, 1997,1(1) : 53 - 66.
  • 6Dorigo M, Caro G D. Ant algorithms for discrete optimization[J].Artificial Life, 1999, 5(3) : 137 - 172.
  • 7Dorigo M, Gambardella L M. Ant colonies for the travelling salesman problem[J].Biosystems, 1997(43) :73 - 81.
  • 8Colorni A. Ant system for job-shop seheduling[J]. JORBEL, 1994, 34(1):39-53.
  • 9Blackman S, Popoli R. Design and analysis of modern tracking systems[M]. Norwood, MA: Artech House, 1999.
  • 10Thomas S, Holger H H. MAX-MIN ant system[J]. Future Generation Computer Systems ,2000,16(8) :889 - 914.

同被引文献41

  • 1艾剑良,沈键,艾玲英.密集杂波环境下多目标跟踪算法[J].系统工程与电子技术,2004,26(9):1271-1272. 被引量:2
  • 2DUAN Hal-bin,WANG Dao-bo,YU Xiu-fen.A Novel Approach to the Convergence Proof of Ant Colony Algorithm and Its MATLAB GUI-Based Realization[J].International Journal of Plant Engineering and Management,2006,11(2):124-128. 被引量:1
  • 3高尚,孙玲芳,侯志远,杨静宇.基于多样信息素的蚁群算法[J].计算机科学,2006,33(10):160-162. 被引量:6
  • 4Gad A,Majdi F,Farooq M.A comparison of data association techniques for target tracking in clutter[C] ∥Proc.of IEEE the 5th International Conference on Information Fusion,2002:1126-1133.
  • 5Juang D J,Hu K C,Lee M L,et al.Extended neural network solution of radar tracking problems[C] ∥Proc.of IEEE Region 10 Conference,TENCON,2007:1-4.
  • 6Kirubarajan T,Bar-Shalom Y.Probabilistic data association techniques for target tracking in clutter[C] ∥Proc.of IEEE,2004,92(3):536-557.
  • 7Muki D,Wang X Z.Track management and PMHT[C] ∥Proc.of IEEE 10th International Conference on Information Fusion,2007:1-5.
  • 8Frank O,Nicto J,Guivant J,et al.Multiple target tracking using sequential mento carlo methods and statistical data association[C] ∥Proc.of IEEE International Conference on Intelligent Robots and Systems,2003:2718-2723.
  • 9Blackman S S.Multiple hypothesis tracking for multiple target tracking[J].IEEE Trans.on Aerospace and Elecronic Systems,2009,19(1):5-18.
  • 10Jida B,Lherbier R,Wahl M,et al.Bayesican networks and probabilistic data association method for multi-object tracking:application to road safty[C] ∥Proc.of IEEE the 3th International Conference on Information and Communication Technologies:from Theory to Applications,Damascus,2008:1-6.

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部