期刊文献+

基于奇异值的具有年龄变化的人脸识别 被引量:2

Face recognition with ageing based on SVD
下载PDF
导出
摘要 为了增强现有人脸识别算法对年龄变化的鲁棒性,提出了一种新的基于奇异值分解(SVD)和嵌入式隐马尔可夫模型(EHMM)的人脸识别方法。先选取整幅人脸图像的奇异值作为基本特征向量,然后建立年龄函数,对奇异值特征进行修正,再根据得到的年龄函数,对人脸图像进行重建,提取改进后的奇异值特征作为观察序列,送入EHMM中进行分类识别。实验结果表明这种方法能够提高具有年龄变化的人脸识别效率。 A new method of face recognition based on singular value decomposition (SVD) and embedded hidden markov model (EHMM) is presented to enhance the ability of the current face recognition algorithms robust to ageing. First the SVD vectors of the total image as basic feature vectors are selected, and second the age function and adjusts the vectors accordingly are built. Then the image can be reshaped based on the function above, and the new adjusted feature vectors is extracted to be put into the EHMM classification as inputs for classifying and recognizing. The experimental results show that this method can improve the recognition rate of face images with aging.
作者 陈君 张建明
出处 《计算机工程与设计》 CSCD 北大核心 2008年第18期4768-4770,共3页 Computer Engineering and Design
基金 江苏大学高级专业人才科研启动基金项目(05JDG020)
  • 相关文献

参考文献8

  • 1Zhao W, Chellappa R,Phillips P J,et al.Face recognition:A literature survey[J].CM Computing Surveys,2003,35(4):399-458.
  • 2Jonathon Phillips P, Patrick Grother, Ross Micheals, et al. Face recognition vendor test 2002 evaluation report [R]. Wshigton USA,2003.
  • 3Lantis A,Taylor C J.Robust face recognition using automatic age normalization[J].Digital Object Identifier,2000,2(2):478-481.
  • 4Lanitis A,Taylor C J,Cootes T F.Toward automatic simulation of aging effects on face images [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence,2002,24(4):442-455.
  • 5王蕴红,谭铁牛,朱勇.基于奇异值分解和数据融合的脸像鉴别[J].计算机学报,2000,23(6):649-653. 被引量:58
  • 6蒋巍,王伟.基于小波和奇异值分解的人脸识别方法[J].计算机仿真,2006,23(4):181-183. 被引量:6
  • 7Samaria F, Young S.HMM based architecture for face identification[J].Image and Computer Vision,1994,12(8):537-543.
  • 8Nefian A,Hayes M H.An embedded HMM-based approach for face detection and recognition[C].Proceedings of IEEE International Conference on Acoustics,Speech,and Signal Processing, 1999:3553-3556.

二级参考文献10

  • 1Zhang Jun,IEEE Proc,1997年,85卷,9期,312页
  • 2Cheng Y,Proceedings of the 11th International Conference on Pattern Recognation,1992年,221页
  • 3Cheng Yongqing,SPIE.Proceedings on Intelligent Robots and Computer,1991年,85页
  • 4Hong Z,Pattern Recognition,1991年,24卷,3期,211页
  • 5Zi-Quan Hong.Algebraic feature extraction of image for recognition[J].Pattern Recognition,1991,24 (3):211-219.
  • 6James D Foley,Andries van Dam,Steven K Feiner,John F Hughes,Richard L.Phillips.Introduction to Computer Graphics[M].Pearson Education.2000.
  • 7Jen-Tzung Chien,Member IEEE,Chian-Chen Wu.Discriminant Waveletfaces and Nearest Feature Classifiers for Face Recognition.[J].IEEE Transaction on Pattern Analysis and Machine Intelligence.2002,24(12):1644-1649.
  • 8周德龙,高文,赵德斌.基于奇异值分解和判别式KL投影的人脸识别[J].软件学报,2003,14(4):783-789. 被引量:59
  • 9甘俊英,张有为.一种基于奇异值特征的神经网络人脸识别新途径[J].电子学报,2004,32(1):170-173. 被引量:54
  • 10周志明,王以治,黄文芝,王宁宁.基于小波和支持向量机的人脸识别技术[J].计算机工程与应用,2004,40(12):52-54. 被引量:11

共引文献61

同被引文献9

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部