期刊文献+

小数时延的FIR系统和频域加权实现

Implementation of fractional time delay based on FIR system and frequency domain weighting
下载PDF
导出
摘要 提出了基于线性移不变系统实现小数时延的方法并进行了性能分析。根据信号的时延与其频谱的对应关系,给出了基于线性相位加权实现时延的频域方法。通过定义总体平均误差参数,对其性能进行了比较。实验结果表明,这2种方法具有延时精度高,实现方便等优点。 The paper presents a new method based on linear shift invariable system to implement u,e fractional delay. Based on the relationship between signal's time domain and its frequency domain, we present the implementation of linear phase weighting method in frequency domain. In the end, the paper carried out the comparison of performance from the time delay error, system frequency response and whole average error. The experiment result indicates that these methods have the property of high precision in time delay and convenience to implement.
出处 《西安科技大学学报》 CAS 北大核心 2008年第3期573-576,588,共5页 Journal of Xi’an University of Science and Technology
关键词 小数时延 无失真传输系统 线性加权 fractional delay none distortion linear system linear phase weighting
  • 相关文献

参考文献9

  • 1Alan V Oppenheim,Alan S Willsky.信号与系统[M].第二版.刘树棠,译.西安:西安交大出版社,1998.
  • 2奥本海姆,谢弗.离散时间信号处理[M].北京:科学出版社,1998.
  • 3Quzai A H. An overview on time delay estimation in active and passive systems for target localizations [ J ]. Proc. IEEE, 1980, 70(8) :527 -533.
  • 4Pridham R G, Mucci R. A digital interpolation beamforming for low-pass and bandpass signals Proc [ J ]. IEEE, 1977,67 (5) :904 -919.
  • 5Youn D H. An adaptive approach for time delay estimation of band-limited signals [ J ]. Assp, 1983,31 (3) :780 -784.
  • 6Tseng C C. Design of fractional order digital FIR differentiators [ J ]. IEEE Signal Processing Letters,2001,8 (3) :77 -79.
  • 7Peter J, Kootsookos Robert C. Willianson FIR approximaton of fractional sample delay systems [ J ]. IEEE Transactions on Circuits and Systems-II Analog and Digital Signal Processing, 1996,43(3) :269 -271.
  • 8马远良,赵俊渭,张全.用FIR数字滤波器实现高精度时延的一种新方法[J].声学学报,1995,20(2):121-126. 被引量:25
  • 9杨益新,孙超.一种改进的FIR数字滤波器自适应设计方法[J].西北工业大学学报,2002,20(4):554-558. 被引量:17

二级参考文献3

共引文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部