期刊文献+

一种快速嘴部检测方法在视听语音识别的应用

Fast Mouth Detection Approach Applied in Audio-Visual Speech Recognition
下载PDF
导出
摘要 在改进噪音环境下的语音识别率中,来自于说话人嘴部的可视化语音信息有着显著的作用。介绍了在视听语音识别(AVSR)中的重要组成部分之一:可视化信息的前端设计;描述了一种用于快速处理图像并能达到较高识别率的人脸嘴部检测的机器学习方法,此方法引入了旋转Harr-like特征在积分图像中的应用,在基于AdaBoost学习算法上通过使用单值分类作为基础特征分类器,以级联的方式合并强分类器,最后划分检测区域用于嘴部定位。将上述方法应用于AVSR系统中,基本上达到了对人脸嘴部实时准确的检测效果。 The visual information comes from speaker's mouth had proved very useful in improving speech recognition, especially in noise environment. In this paper, first introduced one of the main components in audio-visual speech recognition system: visual front end design then proved a machine learning method for mouth region detection which could rapidly process image with high detection rates. This approach includes the introduction of rotated Harr-like feature in integral image, a learning algorithm based on Adaboost with sign value trees as base classifiers, combination of complex classifiers in cascade and regionalization of the face area. At the end, applied this scheme in AVSR system yield high detection rates which may reaches basically real time requirement.
出处 《计算机技术与发展》 2008年第10期16-19,共4页 Computer Technology and Development
基金 上海市科技基金资助项目(7A07094)
关键词 模态 视听语音识别 Harr-like特征 重要区域 积分图像 区域划分 modality audio - visual speech recognition Harr - like feature region of interest integral image regionalization
  • 相关文献

参考文献8

  • 1Gong. Speech recognition in noisy environments: a survey[ J ]. Speech Communication, 1995,16: 261 - 291.
  • 2Potamianos G, Luettin J. Audio- visual speech recognition [ R]. Final Workshop 2000 Report, Center for Language and Speech Processing. Baltimore, MD: The Johns Hopkins University,2000.
  • 3Liang H, Liu X X,Zhao Y B,et al. Speaker independent audio - visual continuous speech recognition[ C]//In Proc. of IEEE ICME. Lausanne, Switzerland: [ s. n. ] ,2002.
  • 4Viola P, Jones M J. Rapid Object Detection using a Boosted Cascade of Simple Features[J]. IEEE CVPR,2001 (1) :511 - 518.
  • 5Papageorgiou C,Oren M, Poggio T.A general framework for Object Detection[ C]//In International Conference on Com- puter Vision. [s. l. ]:[s. n. ] ,1998.
  • 6Freund Y,Schapire R E. A decision-theoretic generalization of on-llne learning and an application to boosting[C]//In Computational Learning Theory: Eurocolt ' 95. [ s. l. ] : Springer - Verlag, 1995:23 - 37.
  • 7Amit Y,Geman D,Wilder K. Joint induction of shape features and tree classifiers[J]. IEEE Transactions on Pattern Ananlysis and Machine Intelligence, 1997,19( 11 ) : 1300 - 1305.
  • 8Cristinacce D, Cootes T. Facial feature detection using AdaBoost with shape constraints[ C ]//British Machine Vision Conference. [ s. l. ] : [ s. n. ] ,2003.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部