摘要
介绍了极值理论在柔性路面可靠性分析中的应用。研究了弯沉和疲劳寿命合理的渐近分布形式,弯沉的最大值与最小值的极值分布均可用1型渐近分布来表示,疲劳寿命最大值的极值分布可用1型渐近分布来表示;疲劳寿命最小值的极值分布采用3型渐近分布来表示。使用渐近分布来表示极值分布,为使结果有很好的精度,样本容量应不小于70。并给出一种利用第一阶顺序统计量来确定随机变量分布曲线下界值的方法。利用渐近分布计算路面结构的可靠度,当失效率小时,将得到很高精度的结果。
This paper introduces applications of extreme value theory in reliability analysis for flexible pavements. The proper asymptotic distribution forms for deflection and fatigue life are researched. For both largest and smallest value of deflection, the proper forms are type 1 asymptotic distribution, for largest value of fatigue life, it is type 1, and type 3 for smallest value of fatigue life. When the extreme value distributions are defined by asymptotic distribution, the sample should be larger than 70 to get accurate results. A method of determining low bound of random variable is presented using the first order statistic. Reliability of flexible pavements are calculated using asymptotic distribution, the results are very precise when the failure rates are low.
出处
《中国公路学报》
EI
CAS
CSCD
北大核心
1997年第4期25-32,共8页
China Journal of Highway and Transport
关键词
公路
柔性路面
可靠性
极值理论
Extreme value, Asymptotic distribution, Deflection, Fatigue life, Reliability