期刊文献+

基于关键帧的核密度估计背景建模方法 被引量:5

Kernel density estimation background model method based on key frame
下载PDF
导出
摘要 在充分研究现有运动目标检测算法的基础上,提出了一种新的非参数核密度估计背景模型。应用高斯核密度估计进行背景建模,不需要事先假定背景特征的密度分布,根据视频序列像素灰度的相似性原理从训练样本中提取关键帧,减小了密度估计的样本量。将剩余的灰度值按距离最近原则归并到关键帧中去,降低目标检测的虚警率和误检率。实验结果表明:该算法在检测精度影响极小的情况下,大大提高了原算法的速度,可用于室外的实时视频监控系统。 A new background model of non-parameter kernel density estimate is presented on the basis of abundant study on algorithms of moving object detection. Gauss kemd density estimate is used to build background model without assuming prior density distribution. According to pixels' similarity of video sequence, key frame are chosen from training samples, and the remaining gray value are merged to the key frames according to nearest interval principle. Samples of density estimate and false alarm rate as well as detection error rate are reduced. Experimental results show that the algorithm greatly enhances the speed of original algorithm in the case of minimal impact on measurement accuracy, which enables the algorithm to be used in outdoor environment surveillance systems.
出处 《光学技术》 EI CAS CSCD 北大核心 2008年第5期699-701,共3页 Optical Technique
基金 国家自然科学基金(60774030)
关键词 运动目标检测 核密度估计 关键帧 相似性 moving object detection kernel density estimation key frame similarity
  • 相关文献

参考文献10

  • 1章毓晋.图像工程(上册)[M].北京:清华大学出版社,2000..
  • 2章毓晋.图像工程(下册)[M].北京:清华大学出版社,2000..
  • 3Meier T, Ngun K N. Video segmentation for content based coding [J]. IEEE Trans on Circuits and Systems for Video Technology, 1999, 9(8): 1190--1203.
  • 4Barron J, Fleet D, Beachemin S. Performance of optical flow techniques[J]. International Journal of Computer Vision, 1994, 12 (1) : 42--47.
  • 5Friedman N, Russell S. Image segmentation in video sequences: A probabilistic approach[A]. Proceeding of the 13th Conference on Uncertainty in Artificial Intelligence (UAI) [ C ]. USA: San Francisco, 1997.
  • 6Stauffer C, Grimson W E L. Adaptive background mixt- ure models for real- time tracking[A]. Proc. of the IEEE Computer Society Conf. on Computer Vision and Pattern Recognition[C]. IEEE Computer Society, 1999, (2) : 246--252.
  • 7Elgammal A, Harwood D, Davis L. Non- parametric model for background subtraction[A]. Proceedings of 6th European Conference on Computer Vision[C]. Ireland: Dublin, 2000 : 751--767.
  • 8马振华. 现代应用数学手册:概率统计与随机过程卷[M]. 北京:清华大学出版社,2002. 224~228.
  • 9毛燕芬,施鹏飞.一种用于运动目标检测的多模态非参数背景模型[J].上海交通大学学报,2005,39(S1):134-137. 被引量:8
  • 10Komprobst P, Deriche R, Aubert G. Image sequence analysis via partial difference equations[J]. Journal of Mathe - matical Imaging and Vision, 1999, 11(1): 5--26.

二级参考文献7

  • 1McKenna S J,Jabri S,Duric Z,et al.Tracking groups of people[].Computer Vision and Image Understanding.2000
  • 2Rittscher J,Karo J,Joga S,et al.A probabilistic background model for tracking[].The th European Conference on Computer Vision.2000
  • 3Haritaoglu I,Harwood D,Davis L S.W4: real-time surveillance of people and their activities[].IEEE Transactions on Pattern Analysis and Machine Intelligence.2000
  • 4Toyama K,Krumm J,Brumitt,B,et al.Wallflower : Principles and practice of background maintenance[].International Conference on Computer Vision.1999
  • 5Stauffer C,Grimson W E L.Learning patterns of activity using real-time tracking[].IEEE Transactions on Pattern Analysis and Machine Intelligence.2000
  • 6Elgammal A,Harwood D,Davis L.Non-parametric model for background subtraction[].The th European Conference on Computer Vision.2000
  • 7Cucchiare R,Grana C,Piccardi M,et al.Detection moving objects, ghosts and shadows in video streams[].IEEE Transactions on Pattern Analysis and Machine Intelligence.2003

共引文献16

同被引文献53

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部