期刊文献+

氮对催化裂化汽油中烯烃加氢饱和反应的影响 被引量:4

EFFECT OF NITROGEN COMPOUNDS ON THE HYDROGENATION OF OLEFIN SATURATION IN FCC NAPHTHA
下载PDF
导出
摘要 采用硅胶吸附脱除原料中氮化物,得到氮含量不同而硫含量及烃类组成基本相同的4种催化裂化汽油原料。为了考察氮化物对催化裂化汽油选择性加氢脱硫过程烯烃加氢饱和反应(HYDO)的影响,在反应温度285℃、氢分压1.6MPa、体积空速4.0h^(-1)及氢油体积比400的条件下,采用 Co-Mo/Al_2O_3催化剂在中型固定床试验装置上进行了4种催化裂化汽油原料选择性加氢脱硫试验。结果表明,在催化裂化汽油选择性加氢脱硫过程中,氮化物对 HYDO 有明显的抑制作用;对直链烯烃和环烯烃加氢饱和反应抑制作用明显,但对支链烯烃加氢饱和反应抑制作用较小。对于硫含量和烃类组成相同的原料,在烯烃饱和率相同时,氮含量较高的原料加氢产物研究法辛烷值损失比氮含量较低的原料加氧产物研究法辛烷值损失小。 Using silica gel to remove nitrogen compounds in FCC naphtha, four feeds having various nitrogen contents and the same hydrocarbon compositions and sulfur content were obtained. During the selective HDS treatment of these four FCC naphtha feeds, the effect of nitrogen compounds on the hydrogenation of olefin saturation (HYDO)was studied in a fixed-bed pilot plant over a commercial CoMo/Al2O3 catalyst, under the conditions of a reaction temperature of 285 ℃ ,a hydrogen partial pressure of 1.6 MPa,a LHSV of 4.0 h^-1 and a H2/oil volume ratio of 400. Results showed that during the selective HDS process, nitrogen compounds could inhibit the HYDO reactions, and the inhibition on linear olefins and cyclic olefins was more significant than that on branched olefins. With the same olefin saturation rate,the RON loss of product from feed having higher nitrogen content was less than that from feed having lower nitrogen content.
出处 《石油炼制与化工》 CAS CSCD 北大核心 2008年第9期13-16,共4页 Petroleum Processing and Petrochemicals
关键词 汽油料 烯烃 加氢反应 辛烷值 gasoline stock nitrogen olefin hydrogenation reaction octane number
  • 相关文献

参考文献5

  • 1Magyar S, Hancsok J,Kallo D. Hydrodesulfurization and hydroconversion of heavy FCC gasoline on PtPd/H USY zeolite. Fuel Processing Technology, 2005,86 : 1151- 1164
  • 2Debuisschert Q, Nocca J. Prime-G+^TM commercial performance of FCC naphtha desulfurization technology. NPRA Annual Meeting, 2003, AM-03-26
  • 3Massoth F E,Miciukiewicz J. The effect of poisoning on the kineties of thiophene hydrogenolysis and hexene hydrogenation. Journal of Catalysis, 1986,101 : 505 - 514
  • 4邵志才,高晓冬,李皓光,聂红.氮化物对柴油深度和超深度加氢脱硫的影响Ⅰ.氮化物含量的影响[J].石油学报(石油加工),2006,22(4):12-17. 被引量:52
  • 5Hatanaka S, Yamada M. Hydrodesulfurization of catalytic cracked gasoline. 2. the difference between HDS active site and olefin hydrogenation active site. Industrial & Engineering Chemistry Research,1997,36, 5110-5117

二级参考文献10

  • 1刘法.柴油馏分超深度加氢脱硫动力学模型研究[D].北京:石油化工科学研究院,2005.
  • 2Joyner R W,Santen R A.Elementary Reaction Steps in Heterogeneous Catalysis[M].Netherlands:Kluwer Academic Publishers,1993.
  • 3Lipsch J M J G,Schuit G C A.The CoO-MoO3-Al2O3 catalyst:Catalytic properties[J].J Catal,1969,15(2):179-189.
  • 4王倩.氮化物、H2S和芳烃对深度加氢脱硫的影响[D].北京:石油化工科学研究院,2004.
  • 5Girgis M J,Gates B C.Reactivities,reaction network,and kinetics in high-pressure catalytic hydroprocessing[J].Ind Eng Chem Res,1999,30(9):2021-2058.
  • 6Nagai M,Kabe T.Selectivity of molybdenum catalyst in hydrodesulfurization,hydrodenitrogenation,and hydrodeoxygenation:Effect of additives on dibenzothiophene hydrodesulfurization[J].J Catal,1983,81 (2):440-449.
  • 7Isoda T,Nagao S,Ma X L,et al.Hydrodesulfurization of refractory sulfur species:1 Selective hydrodesulfurization of 4,6-dimethyldibenzothiophene in the major presence of naphthalene over CoMo/Al3O3 and Ru/Al2O3 blend catalysts[J].Energy & Fuel,1996,10(2):482-486.
  • 8Ho T C.Hydrodenitrogenation catalysis[J].Catal Rev-Sci Eng,1998,30(1):117-160.
  • 9Olive J L,Yoko S B,Moulinas C,et al.Hydroprocessing of indole and o-ethyl aniline over sulfided CoMo,NiMo and NiW catalysis[J].Appl Catal,1985,19(1):165-174.
  • 10李大东,蒋福康.清洁燃料生产技术的新进展[J].中国工程科学,2003,5(3):6-14. 被引量:71

共引文献51

同被引文献37

  • 1赵乐平,庞宏,尤百玲,刘继华.硫化氢对催化裂化汽油重馏分加氢脱硫性能的影响[J].石油炼制与化工,2006,37(7):1-5. 被引量:21
  • 2邵志才,高晓冬,李皓光,聂红.氮化物对柴油深度和超深度加氢脱硫的影响Ⅰ.氮化物含量的影响[J].石油学报(石油加工),2006,22(4):12-17. 被引量:52
  • 3Magyar S, Hancsok J, Kallo D. Hydrodesulfurization and hydro- conversion of heavy FCC gasoline on PtPd/H-USY zeolite[J]. Fuel Processing Technology,2005,86 : 1151-1164.
  • 4Satchell D P S, Crynes B L. High olefins content may limit cracked naphtha desulfurization[J]. Oil and Gas Journal, 1975,73(48) :123-124.
  • 5Broderick D H,Gates B C. Hydrogenolysis and hydrogenation of dibenzothiophene catalyzed by sulfided CoO-MoO3/Al2O3 : the reaction kinetics[J].AIChE Journal, 1981,27 (4) : 663- 673.
  • 6Lee H C, Butt J B. Kinetics of the desulfurization of thiophene:reactions of thiophene and butene[J].Journal of Catalysis, 1977,49(3) : 320-331.
  • 7Ramachandran R, Massothm F E. Studies of molybdena-alumina catalysts. X. Temperature programmed desorption of HzS and thiophene[J]. The Canadian Journal of Chemical Engineering, 1982,60(1) : 17-22.
  • 8Hatanaka S, Yamada M, Sadakane O. Hydrodesulfurization of catalytic cracked gasoline. 2. The difference between HDS active site and olefin hydrogenation active site [J].Ind Eng Chern Res,1997,36(12) :5110-5117.
  • 9Perot G. The reactions involved in hydrodenitrogenation[J].Catalysis Today, 1991,10(4) :447-472.
  • 10Zhao Ruiyu, Yin Changlong, Liu Chenguang. Selective HDS catalysts for FCC gasoline with oxides from hydrotalcite-like compounds as supports[J]. Preprints: Division of Petroleum Chemistry. American Chemical Society,2001,46(1):30-33.

引证文献4

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部