期刊文献+

固液混合火箭发动机中的关键技术及其发展 被引量:19

Key Technique of Hybrid Rocket Motor and Its Development
下载PDF
导出
摘要 根据固液混合火箭发动机的结构特点及工作过程,分析了它所具有的优、缺点。纵观国内、外的研究情况,总结出固液混合火箭发动机中的关键技术和难点,主要包含:(1)发展新的高能固体燃料和氧化剂,提高固体燃料的退移速率;(2)测量工作过程中固体燃料退移速率;(3)研究不同类型固体燃料热解机理及规律;(4)建立固体燃料退移速率的公式;(5)抑制不稳定燃烧;(6)建立缩比准则;(7)发展混合火箭发动机工作过程模拟的数值模型等。分析了国内、外在研究中采用的技术途径、取得的成果,以及今后的发展方向。 Basing the structure and operation process of hybrid rocket motor, both of its advantages and disadvantages were presented. Also, concluding the national and foreign research so far, the key techniques and difficulties were summarized as follows: 1. developing high-energy solid fuel and raising regression rate of the solid fuel; 2. measuring regression rate of solid fuel during operation ; 3. studing pyrogenation of different solid fuels ; 4. building formulation of solid fuel regression rate ; 5. repressing unstable combustion ; 6. establishing subscale rule ; 7. developing numerical model of hybrid rocket motor operation. All of adopted technique, progress, and future development were concluded.
出处 《宇航学报》 EI CAS CSCD 北大核心 2008年第5期1616-1621,共6页 Journal of Astronautics
关键词 固液混合火箭发动机 关键技术 技术途径 退移速率 不稳定燃烧 Hybrid rocket motor Key technique Method Regression rate Unstable combustion
  • 相关文献

参考文献26

  • 1Chiaverini M J, Serin N, Johnson D K, Lu Y C and Kuo K K. Thermal Pyrolysis and Combustion of HTPB-Based Solid Fuels for Hybrid Rocket Motor Applications[ C]//32nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Lake, Buena, Vista, FL,July 1 - 3 , 1996, AIAA Paper 96 - 2845.
  • 2Risha G A, Evans B, Boyer E and Kuo K K. Metals, Energetic Additives, and Special Binders Used in Solid Fuels for Hybrid Rockets [ C]//Chiaverini M J and Kuo K K. Fundamentals of Hybrid Rocket Combustion and Propulsion, Vol.218 , Chap. 10 , AIAA, Reston, VA, Progress in Astronautics and Aeronautics, 2006.
  • 3Knuth William H, Daniel J, Gramert, Chiaverini Martin J. Development and Testing of a Vortex-Driven High-Regression Rate Hybrid Rocket Engine[C]//34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Cleveland, OH, July 13 - 15, 1998, 14p, A98 - 35314.
  • 4Yuasa S, Shimada O, Imamura T, Tamura T and Yamamoto K. A Technique for Improving the Performance of Hybrid Rocket Engines [ C]//35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, LosAngeles, CA, June 20 - 24, 1999, AIAA Paper 99 - 2322.
  • 5Koki KITAGAWA, Torn MITSUTANI, Takaaki RO and Saburo YUASA. Effects of Swirling Liquid Oxygen Flow on Combustion of a Hybrid Rocket Engine[ C]//40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Fort Lauderdale, July 11 - 14, 2004, AIAA Paper 2004 - 3479.
  • 6Karabcyoglu A. Combustion instability and transient behavior in hybrid rocket motors[ C]//Chiaverini M J and Kuo K K. Fundamentals of Hybrid Rocket Combustion and Propulsion, V 218, Chap 9, AIAA, Reston, VA, Progress in Astronautics and Aeronautics, 2006.
  • 7Evans B, Favorito N A and Kuo K K. Study of solid rocket fuel burning-rate enhancement behavior in an X-ray translucent hybrid rocket motor [ C ]//41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Tucson, Arizona, July 10- 13, 2005.
  • 8Russo Sorge A, Esposito A, Quaranta G and Torella G. Regression rate measurements in a hybrid rocket[ C]// 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Huntsville, AL, July 16 - 19, 2000, 6p, A00 - 36645.
  • 9Brian Evans, Grant A R, Nick Favorito, Eric Boyer, Robert B W, Natan L and Kuo K K. Instantaneous regression rate determination of a cylindrical X-ray transparent hybrid rocket motor [ C l// 39th- AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Huntsville, AL, July 20- 23, 2003, A2003- 37840.
  • 10Chiavefini M J, George C H, Lu Yeu-Chemg, Kuo K K and Arie Peretz. Pyrolysis behavior of hybrid rocket solid fuels under rapid heating conditions [J]. Journal of Propulsion and Power, 1999, 15 (6) : 888 - 895.

二级参考文献15

  • 1任汉芬 杨培松.组合型火箭发动机[M].北京:国防工业出版社,1976..
  • 2Ronald W H,Gary N H,Wiley J L.Space Propulsion Analysis and Design[M].USA:The McGraw-Hill Companies,Inc.Primis Custom Publishing,1995
  • 3Hai-Tien L and Mehdi G.Computation of viscous chemically reacting flows in hybrid rocket motors using an upwind LU-SSOR scheme[J].AIAA90-1570
  • 4Kyle Anderson W,James L T,Brain V L.Comparison of finite volume flux vector splittings for the euler equations[J].AIAA Journal,1986,24(9):1453-1460
  • 5Cheng G C,Farmer R C,Jones H S,McFarlane J S.Numerical simulation of the internal ballisitics of a hybrid rocket motor[J].AIAA94 -0554
  • 6Akyuzlu K M,Antoniou A,Martin M W.A physics based mathematical model to predict the regression rate in an ablating hybrid rocket solid fuel[R].AIAA 2001-3242.
  • 7Akyuzlu K M,Antoniou A,Martin M W.Determination of regression rate in an ablating hybrid rocket solid fuel using a physics-based comprehensive mathematical model[R].AIAA 2002-3577.
  • 8Antonis Antoniou,Kazim M Akyuzlu.Physics based comprehensive mathematical model to predict motor performance in hybrid rocket propulsion systems[R].AIAA 2005-3541.
  • 9Elands P J M,Korting P A O G,et al.Comparison of combustion experiments and theory in polyethylene solid fuel ramjets[J].AIAA J.,1990,6(6):732-739.
  • 10Kim Hoo-Joong,Kim Yong-Mo.Numerical modeling for combustion processes of hybrid rocket engine[R].AIAA 2001-4504.

共引文献18

同被引文献160

引证文献19

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部