摘要
针对入侵检测问题,提出了构造混合辨别矩阵的方法,并用C4.5分类器测试选择子集的有效性.实验表明分类器在新算法得到的特征子集上有较好的分类效果.
A novel rough set-based method followed by establishing a mix discernibility matrix is introduced for intrusion detection, and choose C4. 5 algorithm for testing the effectiveness of selected attribute subsets. Experimental results show that the classifiers developed using the selected attribute subsets have better performance than those generated by all attributes.
出处
《南京师范大学学报(工程技术版)》
CAS
2008年第3期71-76,共6页
Journal of Nanjing Normal University(Engineering and Technology Edition)
基金
国家自然科学基金(40771163)资助项目
关键词
入侵检测
粗糙集
混合辨别矩阵
属性约简
intrusion detection, rough set, mix discernibility matrix, attribute reduction