期刊文献+

白光LED用宽激发带的稀土硅酸盐基质荧光粉材料 被引量:3

Wide Excitation-Band Particle Phosphors of Rare Earth-Doped Silicate Host for WLEDs
下载PDF
导出
摘要 采用稀土复合溶胶的喷雾-热解两步法制备了化学计量为SrxM2-xSiO4xEu^2+(M=-Ca、Mg、Ba,x=0-2)的用于白光LED的荧光粉。用Van Uitert公式对SrxCa2-xSiO4体系荧光粉中铕离子的激发态带边位置和微结构参数的关系进行了预测计算;对SrxCa2-xSiO4xSrxMg2-xSiO4、SrxBa2-xSiO4碱土正硅酸盐基质荧光粉样品,实测的激发光谱峰值的典型波长在350-460nm的较宽范围内,发射光谱的典型峰值为562nm;在计算不同阳离子的配位数Eu^2+的发射波长时,把发射波长的计算预测值与实测波长值对比,认为在Sr1.8Ca0.2SiO4:Eu0.04的发光中心中Eu^2+取代Sr^2+均位于六配位的Sr^2+上;荧光颗粒由纳米颗粒(晶)-亚微米的梯次分级自组装结构组成。该稀土硅酸盐基质荧光粉可以作为一种功率型、高亮度和高显色指数的自光LED的重要候选荧光材料。 A particle phosphors with stoichiometric SrxM2-xSiO4 (M=Ca,Mg,Ba, x=0-2 ) for WLEDs (white light emission diode) is prepared by spray-pyrolysis two-step process from rare-earth doped composite sol precursor. Employing the Van Uitert formula, the position of lower d-band edge of Eu^2+ is calculated from microstructure parameters of SrxCa2-xSiO4 system for prediction. The typical wavelengths of effective excitation of alkaline earth silicate hosts like SrxCa2-xSiO4. SrxMg2-xSiO4 and SrxBa2-xSiO4 phosphors lie in a wider range from 350 to 460 nm, while the typical emission peak locates at around 562 nm. By comparing the calculated wavelengths in different coordinate number of cations with the measured values of samples, we concluded that all substitutions of the luminescent center of Eu^2+ in Sr1.8Ca0.2SiO4 for the position of Sr^2+ are in a six-coordinated atomic position. This rare-earth doped silicate phosphor is of a self-assembly, hierarchical structure from nano-crystal or nano- particulate to submicron size in turn. This particle phosphors featured in a wider wavelength range of excitation could be one of the important candidate phosphors for power, high-brightness and higher CRI white LEDs applications.
机构地区 天津理工大学
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2008年第9期1656-1659,共4页 Rare Metal Materials and Engineering
基金 天津市自然科学基金项目(06YFJMJC02300) 天津市科技创新能力与环境建设平台项目(06TXTJJC14602)
关键词 白光LED 发射波长计算 硅酸盐:喷雾热解 WLED calculation of emission peaks silicate phosphor spray pyrolysis
  • 相关文献

参考文献10

  • 1Yoshitaka Taniyasu, Makoto Kasu, Tochiki Makimoto.Nature[J], 2006, 441/18:325.
  • 2Shizuo Tokito, Toshimitsu Tsuzuki, Fumio Sato. Current Appl Phy[J], 2003, 5:331.
  • 3Yueh-Chun Liao, Chia-Her Lin, Sue-Lein Wang. J Am Chem Soc[J], 2005, 127:9986.
  • 4Bowers II Michael J, McBride James R, Sandra Rosenthal J. J Am Chem Soc[J], 2005, 127:15378.
  • 5Yoo J S, Kim S H et al. J Electrchem Soc[J], 2005, 152(5): G382.
  • 6Wang D J, Wang J L, Li L. Chin Phy Let[J], 2006, 23(8): 2247.
  • 7王继磊,王达健,李岚,蒙延双,张纳,李光.硅酸盐单基质白光LED荧光体的制备和光谱性质(英文)[J].发光学报,2006,27(4):463-468. 被引量:22
  • 8Dorenbos P. JLuminescence[J], 2003, 104:239.
  • 9Poort S H M, Reijnhoudt H M, Van der Kuip H O. T et al. J Alloys and Compounds[J], 1996, 241:75.
  • 10Van Uitert L G. J Luminescence[J], 1984, 29:1.

二级参考文献2

共引文献21

同被引文献25

  • 1郑兴华,丁剑,梁国栋,王吉升,杨华珠.钨青铜型(TB)材料[J].江苏陶瓷,2005,38(4):19-22. 被引量:4
  • 2张高科,欧阳世翕,吴伯麟.关于钨青铜结构铌酸盐晶体的通式及其阳离子占位探讨[J].人工晶体学报,1996,25(3):261-266. 被引量:6
  • 3Ha-Kyun Jung et al. Optical Materials . 2006
  • 4Ho Seong Jang et al. Applied Physics Letters . 2007
  • 5Joung Kyu Park et al. Applied Physics Letters . 2006
  • 6Wei-Hsiang Hsu et al. Journal of Alloys and Compounds . 2009
  • 7Ho Seong Jang et al. Advanced Materials . 2008
  • 8Nam-Sik Choi et al. Journal of Luminescence . 2010
  • 9Joung Kyu Park et al. Applied Physics Letters . 2005
  • 10Su Qiang et al. Journal of Alloys and Compounds . 1993

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部