期刊文献+

约束线性描述分析与人脸识别 被引量:1

Constrained Linear Discrimination Analysis and Face Recognition
下载PDF
导出
摘要 针对高维、小样本模式识别中的特征提取问题,提出了一种约束线性描述分析方法(CLDA)。以线性变换后样本的类内距离与类间距离之比最小作为准则函数,同时加上约束条件使变换后的样本中心沿着特定的正交方向,通过白化变换、Gram-Schimdt正交化和正交子空间投影求解约束准则函数得到最优变换矩阵。针对人脸识别的小样本问题,根据奇异值分解定理实现白化变换。对ORL和UMIST人脸库进行了仿真研究,结果表明CLDA方法的性能接近于某些Fisher描述分析方法如直接Fisher描述分析(DDA)和改进的Fisher描述分析(R-LDA)。 A constrained linear discrimination analysis method was proposed for the feature extraction in the pattern recognition of problems with high dimension and small samples. Applying whitening process and Gram-Schimdt orthogonalization and orthogonal subspace projection, an optimal transformation matrix was designed to minimize the ratio of intra-class distance to inter-class distance while imposing the constraint that different class centers after transformation are along specifically directions that are orthogonal each other. For the small sample problem of face recognition, the whitening process was realized by singular value decomposition. The experimental results using the ORL and the UMIST face image database demonstrate that the effectiveness and perfbrmance of CLDA is approximate with some Fisher discrimination analysis such as direct Fisher discrimination analysis (DDA) and regularized Fisher discriminant analysis (R-LDA).
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第18期4937-4940,共4页 Journal of System Simulation
基金 浙江省自然科学基金(Y106085)
关键词 人脸识别 白化变换 约束线性描述分析 正交子空间投影 奇异值分解 face recognition whitening process constrained linear discrimination analysis orthogonal subspace projection singular value decomposition
  • 相关文献

参考文献7

  • 1BELHUMEUR P N, HESPANHA J P.KRIEGMAN D J. Eigenfaces vs. Fisherfaces [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (S0162-8828), 1997, 19(7): 711-720.
  • 2HUA Yu and YANG Jie. A direct LDA algorithm for high-dimensional data with application to face recognition [J]. Pattern Recognition (S0031-3203), 2001, 34(11): 2067-2070.
  • 3LU Juwei, PLATANIOTIS K N, VENETSANOPOULOS A N. Regularization studies of linear discriminant analysis in small sample size scenarios with application to face recognition [J]. Pattern Recognition Letters (S0167-8655), 2005, 26(2): 181-191.
  • 4MIKA S, RATSCH G WESTON J, et al. Fisher discriminant analysis with kernels [C]// Proceedings of IEEE International workshop on Neural Networks for Signal Processing. Madison, Wisconsin, August, 1999. USA: IEEE, 1999: 41-48.
  • 5高秀梅,杨静宇,杨健.一种最优的核Fisher鉴别分析与人脸识别[J].系统仿真学报,2004,16(12):2864-2868. 被引量:13
  • 6LU Juwei, PLATANIOTIS K N, VENETSANOPOULOS A N. Face recognition using kernel direct discriminant analysis algorithms [J]. IEEE Transactions on Neural Networks (S1045-9227), 2003, 14(1): 117-126.
  • 7SOLTNIAN-ZADEH H, WlNDHAM P, PECK D J. Optimal linear transformation for MRI feature extraction [J]. IEEE Transactions on Medical Imaging (S0278-0062), 1996, 15(6): 749-767.

二级参考文献14

  • 1S S Wilks. Mathematical Statistics [M]. New York: Wiley, 1962.
  • 2R Duda, P Hart. Pattern Classification and Scene Analysis [M]. New York: Wiley, 1973.
  • 3Peter N. Belhumeur, Joao P.Hespanha, David J.Kriegam. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection [J]. IEEE Trans.Pattern Anal. Machine Intell, 1997, 19(7): 711-720.
  • 4J Yang, J-Y Yang. Why can LDA be performed in PCA transformed space? [J]. Pattern Recognition, 2003, 36(2): 563-566.
  • 5Sebastian Mika, Gunnar R?tsch, Jason Weston, et al. Fisher discriminant analysis with kernels [A]. Proceedings of IEEE International Workshop on Neural Networks for Singal Processing [C]. Madison, Wisconsin, August 1999. 41-48.
  • 6Volker Roth, Volker Steinhage. Nonlinear discriminant analysis using kernel functions [A]. In S.A.Solla,T.K.Leen, K.-R.Müller, editors. Advance in Neural Information Processing Systems 12 [C]. Cambridge, MA: MIT Press, 2000, 568-574 .
  • 7G Baudat, F Anouar. Generalized discriminant analysis using a kernel approach [J]. Neural Computation, 2000, 12(10): 2385-2404.
  • 8Vladimir N Vapnik. The Nature of statistical Learning Theory [M]. New York: Springer-Verlag, 1995.
  • 9Bernhard Sch?lkopf, Alexander Smola. Klaus Robert Muller. Nonlinear component analysis as a kernel eigenvalue problem [J]. Neural Computation, 1998, 10(5): 1299-1319.
  • 10Ming-Hsuan Yang. Kernel Eigenfaces vs. kernel Fisherfaces: face recognition using kernel methods [A]. Proceedings of the Fifth IEEE International Conference on Automatic Face and Gesture Recognition (RGR'02) [C]. Washington D. C., 2002, 215-220.

共引文献12

同被引文献12

  • 1BAUGI-I W M, KRUSE F A, ATKINSON W W. Quantitative geochemical mapping of ammonium minerals in the southern cedar mountains, nevada, using airborne visible/ infrared imaging spectrometer ( AVIRIS ) [ J ]. Remote Sensing of Environment, 1998,65 ( 3 ) : 292 - 308.
  • 2CHANG C I, REN H. Linearly Constrained Minimum Variance Beamforming for Target Detection and Classification in Hyperspectral Imagery[ C ]//In : Proceedings of IEEE International Geoscience and Remote Sensing Symposium. , Hamburg: [s.n. ],1999:1241 -1243.
  • 3DU Q, CHANG C I. A linear constrained distance-based discriminant analysis for hyperspectral image classification [J]. Pattern Recognition,2001,34(2) :361 - 373.
  • 4NASCIMENTO J M P, DIAS J M B. Vertex component analysis: a fast algorithm to unmix hyperspeetral data[J]. IEEE Transactions on Geosclence and Remote Sensing,2005, 43(4) :898 -910.
  • 5童庆禧,张兵,郑兰芬.高光谱遥感:原理、技术与应用[M].北京:高等教育出版社,2006.
  • 6ISGS Spectroscopy Lab [ EB/OL ]. [ 2007 - 09 - 25 ]. http ://speclab. cr. usgs. gov.
  • 7ABRAMS M, ASHLEY R, ROWAN L, et al. Mapping of hydrothermal alteration in the cuprite mining district, nevada, using aircraft scanner images for the spectral region 0.46 to 2.36 mm[J]. The Journal of Geology, 1977,5 (12) :713 -718.
  • 8SWAYZE G. The hydrothermal and structural History of the Cuprite Mining District, southwestern Nevada: An integrated geological and geophysical Approach [ D ]. Boulder: University of Colorado, 1997.
  • 9CHANG C I, DU Q. Estimation of number of spectrally distinct signal sources in hyperspectral imagery[ J]. IEEE Transactions on Geoscience and Remote Sensing,2004,42(3):608 -619.
  • 10梁娜,何明一.基于遗传算法的混合像元快速分解及分类算法[J].遥感技术与应用,2007,22(4):560-564. 被引量:1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部