摘要
在交互式多模型和概率数据关联算法融合的基础上,又将自适应采样速率算法融合到交互式多模型概率数据关联滤波器中,提出了自适应采样速率交互式概率数据关联算法,该算法不但能有效地跟踪高速机动的目标,且能使系统的采样间隔根据目标的运动状态做自适应调整.仿真结果表明该算法扩大了机动目标的跟踪范围,且对高速机动的目标有很好的跟踪效果和较强的跟踪精度.
Based on the fusion of the combination multiple model(IMM) and the probabilistic data association (PDA) algorithm, the paper fuses IMM--PDA with the ,adaptive sampling rate algorithm, and then presents the adaptive sampling rate interactive multiple model probabilistic data association (AIMMPDA) algorithm, which has good performance to track high maneuvering target. The algorithm can also get the system's sampling interval changed according to the target's movement state. The simulation results show that the proposed algorithm can effectively track maneuvering target with much better performance, and the tracking extension is spread by the fused algorithm.
出处
《河南大学学报(自然科学版)》
CAS
北大核心
2008年第5期518-522,共5页
Journal of Henan University:Natural Science
基金
河南省高校杰出科研人才创新工程项目(2003KYCX003)
河南省高校创新人才培养工程项目
河南省自然科学基金(0411010400)
关键词
采样速率
交互式多模型
概率数据关联
机动目标跟踪
sampling rate
interactive multiple model
probabilistic data association
maneuvering target tracking