摘要
目的:旨在探讨EM算法在具有链结构的传染病发病数资料分析中的应用。方法:借助EM算法,对4口之家的麻疹发病数资料分别拟合Greenwood链二项分布模型和Reed-Frost链二项分布模型。模型拟合效果的比较采用Pearsonχ2检验。结果:基于Greenwood链二项分布模型时,家庭内麻疹感染率为29.08%;而基于Reed-Frost链二项分布模型时,家庭内麻疹感染率为34.67%。Reed-Frost链二项分布模型的拟合效果优于Greenwood链二项分布模型。结论:采用EM算法处理和分析传染病发病数资料更简便易行。
Objective: To explore the use of E-M algorithm for the analysis of chain infectious disease data on outbreak size. Methods: With the E-M algorithm, the Greenwood and Reed-Frost chain binomial models are fitted for infectious disease data on measles outbreak size in household of size four. Results: Based on Greenwood chain binomial model, the infection percent is 29.08 % . Based on Reed-Frost chain binomial mod- el, the infection rate is 29.08 %. The Reed-Frost chain binomial model fitted better than the Greenwood chain binomial model. Conclusions: E-M algorithm can be employed more flexibly to deal with the infectious disease data on outbreak size.
出处
《数理医药学杂志》
2008年第5期565-567,共3页
Journal of Mathematical Medicine
关键词
EM估计
传染病资料
链二项分布模型
流行链
Expectation Maximization algorithm
infectious disease data
chain binomial models
epidemic chain