期刊文献+

弹性撞击作用下弯扭耦合梁的动力响应 被引量:4

Dynamic Response of Bending-torsion coupled Beam under Elastic Impact
下载PDF
导出
摘要 对于质量块以一定初速度撞击悬臂梁端部问题,基于弯扭耦合Timoshenko梁模型,把质量块与悬臂梁作为一个整体振动,动力响应以Duhamel积分表示,使用模态叠加法给出动力响应与撞击力的结果。对于悬臂梁受质量块撞击的算例,分别分析了弯扭耦合梁、弯扭耦合系数很小的梁和各向同性Timoshenko梁,对比讨论了撞击力结果。 For a moving rigid-body impacting on a cantilever end, based on bending-torsion coupled dynamic model of Timoshenko beam, the rigid-body and the beam are regarded as an integrated system of vibration. The general solutions are supposed, and the frequency equation, mode shape and lumped mass of the impact system are yielded. Then the dynamic response is expressed in Duhamel integration where the unknown parameters are determined by the initial impact conditions. Thus the results of dynamic response and impact force are presented with direct mode shape superposition method (DMSM). The numerical results of the impact force are presented and discussed for three beams: bending-torsion coupled beam, bending-torsion beam with little coupling stiffness and Timoshenko isotropy beam without torsion effect. It is concluded that the bending-torsion coupled composite beam impact force can be decreased much more than that of the isotropy Timoshenko beam under the same condition.
机构地区 西北工业大学
出处 《应用力学学报》 EI CAS CSCD 北大核心 2008年第3期415-420,共6页 Chinese Journal of Applied Mechanics
基金 国家自然科学基金(10572119,10632030) 国家111引智计划(B07050) 教育部新世纪优秀人才计划(NCET-04-0958) 陕西省自然科学基金(2006A07) 大连理工大学工业装备结构分析国家重点实验室开放基金资助项目
关键词 弯扭耦合梁 撞击 动力响应 直接模态叠加法 bending-torsion coupled beam, impact, dynamic response, direct mode superposition method.
  • 相关文献

参考文献15

二级参考文献15

  • 1金长义,陈茹仪,赵旭生.厚壁筒管的纵振动[J].辽宁工学院学报,1994,14(1):10-12. 被引量:6
  • 2邢誉峰,诸德超.用模态法识别结构弹性碰撞载荷的可行性[J].力学学报,1995,27(5):560-566. 被引量:26
  • 3诸德超,邢誉峰.点弹性碰撞问题之解析解[J].力学学报,1996,28(1):99-103. 被引量:38
  • 4[1]Bishop R E D, Cannon S M, Miao S. On coupled bending and torsional vibration of uniform beams. Journal of sound and vibration, 1989,131:457-464
  • 5[2]Dokumaci E. An exact solution for coupled bending and torsion vibrations of uniform beams having single cross-sectional symmetry.Journal of sound and vibration, 1987,119:443-449
  • 6[3]Friberg P O. Beam element matrices derived from Vlasov's theory of open thin-walled elastic beams. International Journal of numerical methods in engineering, 1985,21:1205-1228
  • 7[4]Leung A Y T. Natural shape functions of a compressed Vlasov element. Thin-walled structure, 1991,11:31-438
  • 8[5]Vlasov V Z. Thin-walled Elastic Beams, 2nd edn, Moscow, 1959
  • 9[6]Bishop R E D, Price W G. Coupled bending and twisting of a Timoshenko beam. Journal of sound and vibration, 1977,50:469-477
  • 10Zhong Z H,Appl Mech Rew,1994年,47卷,55页

共引文献56

同被引文献20

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部