期刊文献+

二维溃坝绕流的WENO格式数值模拟 被引量:3

Two-Dimensional Dam-break Numerical Simulation Based on WENO Scheme
下载PDF
导出
摘要 WENO(Weighted essentially non-oscillatory scheme)格式是一类新的高精度无振荡差分格式。本文将WENO格式和Runge-Kutta时间离散的思想应用于二维浅水方程组的求解,数值模拟矩形河道中大坝瞬间局部溃倒,下游有障碍物的洪水演进过程,并对模拟结果进行了分析,表明采用WENO格式所建立的高分辨率模型能够有效地模拟溃坝波的演进过程。 WENO is a new high-resolution and non-oscillatory differential scheme. With the WENO scheme and the Runge-Kutta time discertization method, the shallow water equations for numerical simulation of dam-break flows are deduced. The proposed mathematical model was used to predict 2D flood waves due to the partial instantaneous dam-break in a rectangular open channel with a rectangular cylinder barrier downstream, and the reliability of numerical results was analyzed. The comparison and the analysis show that the high-resolution model based on the WENO scheme becomes a good numerical model to effectively simulate the dam-break flows.
出处 《应用力学学报》 CAS CSCD 北大核心 2008年第3期494-497,共4页 Chinese Journal of Applied Mechanics
关键词 WEN0格式 溃坝 数值模拟 ENO schemes, dam-break, numerical simulation.
  • 相关文献

参考文献7

  • 1Harten A. High resolution schemes for hyperbolic conservationlaws[J]. J CompPhys, 1983,49:357-393.
  • 2Senka Vuknovic, Luka Sopta. ENO WENO Schemes with the Exact Conservation Property for One- Dimensional Shallow Water Equations[J]. Journal of Computational Physics,2002, 179 :593-621.
  • 3Liu Xu-dong , Osher Stanley , Chan Tony. Weighted Essentially Nonoscillatory Schemes [J]. J Comp Plays, 1994, 115: 200-212.
  • 4Shu C W, Osher S. Effient implementation of essentially non- oscillatory shock capturing schemes[J]. J Comp Phys, 1988, 77 (2) :439-471.
  • 5梁爱国,槐文信,赵明登.用混合有限分析法求解二维溃坝洪水波的演进[J].水利水电技术,2005,36(10):34-37. 被引量:6
  • 6Roe P L. Approximate Riemann solvers, parameter vectors and difference schemes [J]. J Comput Phys, 1981, 43 : 357- 375.
  • 7Fennema R J, Chaudhry M H. Explicit methods for 2D transient free-surface flows[J]. J Hydr Engrg ASCE, 1990, 116 (11) : 1013-1034.

二级参考文献7

  • 1胡四一,谭维炎.用TVD格式预测溃坝洪水波的演进[J].水利学报,1989,21(7):1-11. 被引量:23
  • 2Katopodes N D, Strelkoff T. Computing two-dimensional dam-break flood waves[J]. J. of Hydraul. Div., ASCE, 1979, 104:1 269-1 288.
  • 3Katopodes N D. Computing two dimensional dam-break flood waves[ J]. J.of Hydraul. Div., ASCE, 1984, 104, (9): 397-420.
  • 4Patankar S V. Numerical Heat Transfer and Fluid Flow[ M ]. Washington,D.C., Hemisphere Pub. Co., 1980.
  • 5Fenemma R J, Chaudhry M H. Explicit methods for 2-D transient freesurface flows[J]. J. of Hydraul. Engrg, ASCE, 1990, 116:1 013-1 035.
  • 6李炜.粘性流体的混合有限分析法[M].北京:科学出版社,2000..
  • 7韩龙喜.求解守恒形式的二维浅水方程的SIMPLE类程式[J].水利学报,2000,31(7):91-95. 被引量:6

共引文献5

同被引文献37

  • 1张永祥,陈景秋,韦春霞.一维溃坝洪水波的数值模拟-时空守恒法[J].重庆大学学报(自然科学版),2005,28(5):136-138. 被引量:8
  • 2郭永涛,魏文礼.基于ENO格式的一维溃坝水流数值模拟[J].西安理工大学学报,2005,21(3):293-295. 被引量:5
  • 3郑勇刚,顾元宪,陈震.薄膜破坏过程数值模拟的MPM方法[J].力学学报,2006,38(3):347-355. 被引量:5
  • 4Liang D F, Roger A, Lin B L. Comparison between TVD-MaeCormack and ADl-type solvers of the shallow water equations [ J ]. Advances in Water Resources, 2006, 29(12) : 1833 - 1845.
  • 5Senka V, Luka S. ENO and WENO schemes with the exact conservation property for one-dimensional shallow water equations [ J ]. Journal of Computational Physics, 2002, 179 ( 2 ) : 593 -621.
  • 6Liu X D, Osher S, Chan T. Weighted essentially nonoscillatory schemes [ J ]. Journal of Computational Physics, 1994, 115: 200 -212.
  • 7Capdeville G A. Central weno scheme for solving hyperbolic conservation laws on non- uniform meshes [ J ]. Journal of Computational Physics, 2008, 227(5 ) : 2977 - 3014.
  • 8Hu J, Guo Sh G. Solution to euler equations by high resolution upwind compaet scheme based on flux splitting[ J]. Internet J Numer Meth Fluids,2008,56 ( 11 ) :2139 -2150.
  • 9Alberto C, Annunziato S, Michael D, et at. Well-balanced highorder centered schemes for non-conservative hyperbolic systems. Applications in Water Resources, 2009, 32 (6) : 834 - 844.
  • 10Alberto C, Michael D, Annunziato S, et al. Well-balanced high- order centered schemes on unstructured meshes for shallow water equations with fixed and mobile bed. Advances in Water Resources, 2010, 33 (3) : 291 -303.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部