期刊文献+

用IHB法分析双谐波激励下铰接塔-油轮系统的非线性动力学特性 被引量:1

Nonlinear Dynamical Behavior of ALT-Tanker Under Two Harmonic Excitations with Incremental Harmonic Balance Method
下载PDF
导出
摘要 研究了考虑平方阻尼情况下,铰接塔-油轮系统在双谐波激励下的非线性动力学特性。将该系统简化为单自由度分段线性恢复力,含平方阻尼的运动学分析模型,建立了铰接装载塔系统的分段非线性动力学方程。采用增量谐波平衡法获得系统周期解,使用Floquet理论判断系统的运动稳定性,结合路径跟踪法跟踪系统响应曲线,获得了系统所有可能的亚谐、谐波、组合谐波共振运动。分析了不对称恢复刚度比值对系统亚谐、组合谐波共振和对系统运动倍周期分岔点的影响,比较了考虑平方阻尼和不考虑平方阻尼情况下系统非线性动力学特性,得到了系统的一些重要的非线性动力学特点。 The nonlinear dynamical behaviors of ALT(articulated loading tower)-Tanker system under two harmonic excitations are investigated. The system is simplified into a single degree of freedom model with piecewise linear restoring force and square damping, the piecewise nonlinear motion equation is established. The steady periodic motions of the ALT-Tanker system are obtained with incremental harmonic balance(IHB) method. The stability analysis is performed via Floquet theory. The path-following procedure is used to trace response curves. And all of possible sub-harmonic, harmonic and combination-harmonic resonances are found out. The influence of the ratio of the non symmetric restoring rigidity on sub-harmonic, combination-harmonic resonances and the period doubling bifurcation is analyzed, the nonlinear dynamical behaviors considering square damping or not are compared. So some important nonlinear dynamical behaviors of ALT-Tanker system are acquired.
机构地区 天津大学
出处 《应用力学学报》 EI CAS CSCD 北大核心 2008年第3期498-502,共5页 Chinese Journal of Applied Mechanics
基金 教育部高等学校博士点基金项目(20050056052)
关键词 铰接塔 分段非线性 增量谐波平衡法 平方阻尼 组合共振 亚谐共振 articulated loading tower (ALT), piecewise nonlinear, incremental harmonic balance(IHB) method , square damping, combination-harmonic resonance, sub-harmonic resonance.
  • 相关文献

参考文献12

  • 1Thompson J M T, Vokain A R. Sub-harmonic resonances and chaotic motions of the bilinear oscillator[J]. IMA Journal of Applied Mathematics, 1983,31 : 207-237.
  • 2Virgin L N, Bishop S R. Catchment regions of multiple dynamic responses in nonlinear problems of offshore mechanics [J]. Journal of Offshore Mechanics and Arctic Engineering, 1990,112(2) : 127-133.
  • 3Han S C, Jack Y K L. Non-linear behavior and chaotic motions of an SDOFsystem with piecewise-non-linear stiffness [J]. Journal of Non-Linear Mechanics, 1991,26(5):461-473.
  • 4Han S C, Jack Y K L. Nonlinear behaviour of an articulated offshore loading platform[J]. Applied Ocean Research, 1991, 13(2) :63-74.
  • 5Han S Choi, Jack Y K L. Nonlinear mooring line induce slow drift motion of an ALP-Tanker[J]. Ocean Engng, 1993,20 (3) :233-246.
  • 6Rgahothama A, Narayanan S. Bifurcation and chaos of an articulated loading platform with piecewise non-linear stiffness using the incremental harmonic balance method[J]. Ocean Engineering, 2000,27 : 1087-1107.
  • 7Wong C W, Zhang W S. Periodic forced vibration of unsymmetrical piecewise-linear systems by incrementa[ harmonic balance method[J]. Journal of Sound and Vibration, 1991,149 (1): 91-105.
  • 8Lau S L, Zhang W S. Nonlinear vibration of pieeewise linear systems by incremental harmonic balance method[J]. Journal of Applied Mechanics, 1992, 59:153-163.
  • 9Chen Y, Andrew Y T L. Bifurcation and Chaos in Engineering[M]. London: Springer, 1998, 311-340.
  • 10Xu L, Lua M W, Cao Q. Nonlinear vibrations of dynamical systems with.a general form of piecewise-linear viscous damping by incremental harmonic balance method[J]. Physics Letters A, 2002,301:65-73.

同被引文献11

  • 1蔡铭,刘济科,李军.多自由度强非线性颤振分析的增量谐波平衡法[J].应用数学和力学,2006,27(7):833-838. 被引量:19
  • 2Holster Jesse L. Analytical Model for Liquid Rocket Propellant Feedline Dynamics [ J ]. Journal of Spacecraft, 1973,11 (3) :180-187.
  • 3Lau S L, Cheung Y K. Amplitude Incremental Variational Principle for Nonlinear Vibration of Elastic System [J]. Journal of Applied Mechanics, 1981,48 (12) :959-964.
  • 4Cheung Y K, Chen S H, Lau S L. Application of the Incremental Harmonic Balance Method to Cubic Non-Line- arity Systems [J]. Journal of Sound and Vibration, 1990, 140(2) :273-286.
  • 5Wong C W, Zhang W S, Lau S L. Periodic Forced Vibration of Unsymmetrical Piecewise Linear Systems by Incremental Harmonic Balance Method [J]. Journal of Sound and Vibration, 1991,149( 1 ) :91-105.
  • 6Lau S L, Zhang W S. Nonlinear Vibrations of Piecewise Linear Systems by Incremental Harmonic Balance Method [J]. Journal of Applied Mechanics, 1992,59 ( 3 ).
  • 7Xu L, Lu M W,Cao Q. Bifurcation and Chaos of a Harmonically Excited Oscillator with Both Stiffness and Viscous Damping Piecewise Linearities by Incremental Harmonic Balance Method [J]. Journal of Sound and Vibration, 2003,264 ( 5 ).
  • 8Banik A K, Datta T K. Stability Analysis of an Articulated Loading Platform in Regular Sea [ J]. Journal of Computational and Nonlinear Dynamics, 2008,3 ( 1 ).
  • 9Banik A K, Datta T K. Stability Analysis of Two-Point Mooring System in Surge Oscillation [ J]. Journal of Computational and Nonlinear Dynamics, 2010,5 (4).
  • 10刘红军.稳流型流量调节器动态响应特性研究[J].推进技术,1999,20(1):60-64. 被引量:7

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部