期刊文献+

正交复滤波器与小波的数值构造 被引量:1

Numerical method for constructing orthogonal complex filter banks and wavelets
下载PDF
导出
摘要 研究了参数化正交复滤波器与小波的数值构造方法.在以往研究成果的基础上,建立了构造正交复滤波器的蝶形算法,该算法便于计算任意长度紧支集复滤波器,便于优化参数设计所需的滤波器与小波.并且研究了参数变化与复滤波器性质的关系,给出相关定理并加以证明.最后给出不同参数下复滤波器、复尺度函数和复小波的计算实例,通过参数优化得到具有对称性和近似线性幅频特性的复小波函数. The numerical methods for constructing the parameterized orthogonal complex filter banks and wavelets were investigated in this paper. Based on the Ref , a so-called papilionaceous algorithm for constructing the orthogonat complex filter banks is presented, which was used to easily design orthogonal complex filter banks and wavelets on arbitrary length compactly supported sets by the optimizations of the parameters. The relationships between the properties of complex filter banks and the parameters were discussed and the theorems about them were proved. The complex filter banks, scale functions and wavelets with various parameters are calculated in the example. The orthogonal complex wavelets with the symmetric property and approximately linear phase are obtained by the parameter optimizations.
作者 侯宇
出处 《中国计量学院学报》 2008年第3期194-200,共7页 Journal of China Jiliang University
关键词 正交复滤波器 正交复小波 对称性 线性相位 数值算法 orthogonal complex filter banks orthogonal complex wavelet symmetric property linear phase numerical method
  • 相关文献

参考文献13

  • 1ZHANG X P, PENG Y N. Orthogonal coraplex filter banks and wavelets: some properties and design[J]. IEEE Trans Signal Processing, 1999,47 : 1039-1999.
  • 2MALLAT S. A theory for multiresolution signal decomposition: The wavelet representation[J]. IEEE Trans Pattern Anal Machine Intell, 1989,11 : 674-693.
  • 3VETTERLI M, KOVACEVIC J. Wavelets and Subband Coding[M]. Englewood: Prentice Hall, 1995:63-71.
  • 4VAIDYANATHAN P P. Multirate Systems and Filter Banks[M]. Englewood: Prentice Hall, 1993:102-113.
  • 5YOUNG R K. Wavelet Theory and Its Applications[M]. Boston: Kluwer, 1993:252-260.
  • 6WEISS L G. Wavelets and wideband correlation processing [J]. IEEE Signal Processing Mag, 1994,11 : 13-32.
  • 7LAWTON W. Applications of complex valued wavelet transforms to subband decomposition [J]. IEEE Trans Signal Processing, 1993,41: 3566-3568.
  • 8BELZER B, LINA J M, VILLASENOR J. Complex, line ar-phase filters for efficient image coding[J]. IEEE Trans Signal Processing, 1995,43:2425-2427.
  • 9LINA J M, MAYR M. Parameterizations for complex daubechies wavelets[C]//in Proc SPIE Wavelet Applicat Conf. Orlando : [s. n], 1994,2242 : 868.
  • 10PAN H P. General stereo image matching using symmetric complex waVelets[C]//in Proc SPIE Wavelet Application, Signal Image Process. Denver:[s. n], 1996 : 2825.

同被引文献6

  • 1GOUPILLAUD P, GROSSMANN A, MORLET J. Cycleoctave and related transforms in seismic signal analysis[J]. Geoexploration, 1984,23,85-102.
  • 2MALI.AT S A. Theory for multiresolution signal decomposition: the wavelet representation[J]. IEEE Trans Pattern Anal Machine Intell, 1989,11:674-693.
  • 3MALLAT S A. Multiresolution approximations and wavelet orthonormal bases of L^2 (R)[J]. Trans Amer Math Soc, 1989,315(1) :69-87.
  • 4DAUBECHIES I. Orthonormal bases of compactly supported wavelets[J]. Commun Pure Appl Math, XLI, 1988, 41:909-996.
  • 5DAUBECHIES I. Ten lectures on wavelets [M]. USA: SIAM, 1992: 177-244.
  • 6ZHANG X P, PENG Y N. Orthogonal complex filter banks and wavelets: some properties and design[J]. IEEE Trans Sibnal Processing, 1999,47: 1039-1999.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部