期刊文献+

一类参数不确定超混沌系统的反同步

Anti-synchronization of a Class of Hyperchaotic System with Uncertain Parameters
下载PDF
导出
摘要 利用自适应控制理论,设计控制器和参数自适应控制律,实现了一类参数不确定的异结构超混沌系统的反同步,并用稳定性理论证明了该方法的有效性,同时对具体的超混沌Chen系统和超混沌Rssler系统进行反同步仿真,结果证明数值计算与理论分析一致. Adaptive anti-synchronization method is different structure, and the numerical simulation presented to study a class of hyperchaotic systems with of hyperchaotic Chen system and hyperchaotic Roessler system is given. The adaptive controller is designed for synchronizing response system and drive system. When the parameters are fully unknown, the analytical expression of anti-synchronization controller and adaptive law of parameters is given based on adaptive control and Lyapunov stability theory, which makes the different systems reach to anti-synchronization and identifies the unknown parameters. Numerical simulation shows the effectiveness and feasibility of the method.
出处 《兰州交通大学学报》 CAS 2008年第4期145-148,共4页 Journal of Lanzhou Jiaotong University
基金 甘肃省自然科学科研基金重点资助项目(3ZS051-A25-030 3ZS-042-B25-049) 兰州交通大学科研基金(DXS-07-0028 DXS-07-00289)
关键词 反同步 超混沌 异结构 自适应控制 anti-synchronization hyperchao different structure adaptive control
  • 相关文献

参考文献15

  • 1PECORA L M, CARROLL T L. Synchronization of chaotic systems[J]. Phys. Rev. Lett. , 1990,64(8) :821 -830.
  • 2CARROLL T L, PECORA L M. Synchronization chaotic circuits[J]. IEEE Trans. Circuits Syst. , 1991,38 (4):453-456.
  • 3SHINBROT T, GREBOGI C, OTT E, et al. Using small perturbations to control chaos [J]. Nature, 1993,363(6) :411-417.
  • 4MICHAEL G R, ARKADY S P, JURGEN K. From phase to lag synchronization in coupled chaotic oscillators[J]. Physical Review Letters, 1997,78 ( 22 ): 4193- 4196.
  • 5YU X,SONG Y. Chaos synchronization via controlling partial state of chaotic systems[J]. International Journal of Bifurcation and Chaos,2001,11(6):1737-1741.
  • 6YANG X S. On the existence of generalized synchronizor in unidirectionally coupled systems [J]. Applied Mathematics and Computation,2001,122(1) : 71-79.
  • 7HO M C, HUNG Y C, CHOU C H. Phase and antiphase synchronization of two chaotic systems by using active control[J]. Phys. Lett. A,2002,296( 1 ):43-48.
  • 8SHAH VERDIEV E M,SIVAPRAKASAM S,SHORE K A. Lag synchronizalion in time-delayed systems[J]. Phys. Lett. A,2002,292(6):320-324.
  • 9XU D L, LI Z. Controlled projective synchronization in non-partially linear chaotic systems [J]. International Journal of Bifurcation and Chaos, 2002, 12(6): 1395- 1402.
  • 10BELYKH N, CHUAL O. New type of strange attractor from a geometric model of chua's circuit[J]. International Journal of Bifurcation and Chaos, 1992, 2(3) : 697-704.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部