期刊文献+

两相多孔介质弹塑性动力反应计算分析

Calculation and Analysis of Elasto-plastic Dynamic Response of Fluid-saturated Porous Media
下载PDF
导出
摘要 基于增量形式的流体饱和两相多孔介质弹塑性波动方程组,运用显式逐步积分格式与局部透射人工边界相结合的时域显式有限元方法对该波动方程组进行求解,对两相介质在输入地震波作用下的弹塑性动力反应进行计算和分析,从而揭示流体饱和两相多孔介质弹塑性动力反应的规律。计算结果表明:两相介质弹塑性位移反应峰值要大于相应的弹性位移反应的峰值,并且弹塑性位移反应峰值出现的时刻滞后于弹性位移反应峰值出现的时刻;两相介质弹塑性速度反应与相应的弹性速度反应的差别并不显著。数值计算同时表明,时域显式有限元方法是进行流体饱和两相多孔介质弹塑性动力反应计算分析的一种有效的方法。 In this paper, the incremental elasto-plastic wave equations of fluid -saturated porous media are solved by the time - domain explicit finite element method that consists of explicit step-by-step integral format and local transmitting artificial boundary. Then, the elasto - plastic dynamic response of fluid-saturated porous media under the action of earthquake wave input is calculated and analyzed with the method mentioned above. The calculating results show that the peak value of elasto - plastic displacement response of fluid - saturated porous media is greater than that of elastic displacement response, and the time when the peak value of elasto - plastic displacement response appears is behind that of elastic displacement response. The difference between the elasto - plastic velocity response and the elastic velocity response of fluid -saturated porous media is not significant. Meanwhile, numerical calculations indicate that the time - domain explicit finite element method is effective for the calculation and analysis of the elasto -plastic dvnamic response of fluid-saturated porous media.
出处 《地下空间与工程学报》 CSCD 2008年第5期815-819,829,共6页 Chinese Journal of Underground Space and Engineering
基金 国家自然科学基金资助项目(No.50508002) 北京工业大学博士科研启动基金资助项目(52004999200702)
关键词 流体饱和两相多孔介质 弹塑性 动力反应 时域显式有限元方法 fluid - saturated porous media elasto - plasticity dynamic response time - domain explicit finite element method
  • 相关文献

参考文献8

二级参考文献30

  • 1张建民,谢定义.饱和砂土动本构理论研究进展[J].力学进展,1994,24(2):187-204. 被引量:16
  • 2Zienkiewica O C.有限元与近似法[M].北京:人民交通出版社,1989..
  • 3刘汉龙 陈生水.土体动力本构模型及动力分析研究进展[A]..岩土工程青年专家学术论坛文集[C].中国建筑工业出版社,1998.29-42.
  • 4Zienkiewicz O C,有限元与近似法,1989年
  • 5Liao Z P,Soil Dyn Earthq Eng,1984年,3卷,4期,176页
  • 6陈惠发.土木工程材料的本构方程[M].华中科技出版社,2001..
  • 7BOIT M A. Theory of propagation of elastic wave in a fluid-saturated porous solid[J]. The Journal of the Acoustical Society of America, 1956,28(2):168-178.
  • 8CHEN J. Time domain fundamental solution to Biot complete equations of dynamic poro-elasticity Part I : two-dimensional solution[J]. Int J Solids Structures, 1994,31(10):1447-1490.
  • 9ZIENKIEWICZ O C, et al. Dynamic behavior of saturated porous media, the generalized Biot formulatin and its numerical solution[J]. Int J Numer Anal Methods Geomech, 1984(8): 71-96.
  • 10PREVOST J H. Wave propagation in fluid-saturated porous media: An efficient finite element procedure[J]. Soil Dynamics and Earthquake Engineering, 1985, 4(4): 183-201.

共引文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部