期刊文献+

基于高斯粒子滤波器和TVAR模型的语音增强技术 被引量:3

Speech enhancement technique based on gaussian particle filter and time-varying autoregressive model
下载PDF
导出
摘要 为了提高对时变自回归(TVAR)模型参数的估计精度,改善语音信号增强效果,通过将TVAR模型的参数转换为格型滤波器的反射系数,给出了一种判断模型稳定性的简单方法。将TVAR模型的信号和反射系数矢量增广为状态矢量后,应用高斯粒子滤波器(GPF)估计TVAR的模型参数,构造了语音增强算法。通过蒙特卡洛仿真实验比较了扩展卡尔曼滤波器(EKF)、标准粒子滤波器(PF)和GPF的语音增强效果,结果表明本文提出的TVAR模型能较好地描述语音信号的变化特性;PF比传统的卡尔曼滤波具有更好的滤波能力,而GPF能够在一定程度上克服粒子的退化现象,具有比标准PF更强的估计TVAR模型参数的能力,从而获得了更好的语音增强和去噪效果。 In order to enhance estimation precision of time-varying autoregressive model (TVAR) parameters and improve speech enhancement performance, a simple method to judge stability of model can be realized through transforming parameters of TVAR model into reflection coefficients of grid filter. When TVAR model signal and reflection coefficients were extended to state vector, Gaussian Particle Filter (GPF) was applied to estimate parameters of TVAR model. Monte Carlo experiments were done to evaluate the enhancement effect of Extended Kalman Filter (EKF), standard Particle Filter(PF) and GPF, and the simulation results indicate that TVAR model is more efficient in describing the variation characteristic of speech signal ; and PF has stronger filtering ability than Kalman filter, moreover GPF can overcome degeneracy problem of standard PF, resulting in stronger estimation ability, better enhancement and noise filtering effect.
作者 朱志宇
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2008年第9期1903-1907,共5页 Chinese Journal of Scientific Instrument
基金 江苏省高校自然基金(06KJB510030)资助项目
关键词 语音增强 时变自回归(TVAR)模型 粒子滤波器 高斯粒子滤波 扩展卡尔曼滤波器 speech enhancement time-varying autoregressive model Particle Filter Gaussian Particle Filter Extended Kalman Filter
  • 相关文献

参考文献12

  • 1HASAN M K, SALAHUDDIN S, KHAN M R. A modified a priori SNR for speech enhancement using spectral subtraction rules[J ]. IEEES Signal Process Lett, 2004, 11 (4) :450-453.
  • 2戴明扬,周毅,徐柏龄.基于声门波码本受限的迭代维纳滤波语音增强[J].声学学报,2003,28(1):21-27. 被引量:5
  • 3HU Y, LOIZOU P C. Speech enhancement based on wavelet thresholding the muhipaper spectrum [ J ]. IEEE Trans on Speech and Audio Processing, 2004,12( 1): 59-67.
  • 4MEDINA C A, ALEAIM A, APOLINARIO J A. Wavelet denoising of speech using neural networks for threshold selection [ J ]. Electronics Letters, 2003, 39 ( 25 ) : 1869-1871.
  • 5杨玺,樊晓平.基于仿生小波变换和自适应阈值的语音增强方法[J].控制与决策,2006,21(9):1033-1036. 被引量:6
  • 6王娜,郑德忠.结点阈值小波包变换语音增强新算法[J].仪器仪表学报,2007,28(5):952-955. 被引量:14
  • 7VERMAAK J, ANDRIEU C. Particle methods for bayesian modeling and enhancement of speech signals [ J ]. IEEE Trans. Speech and Audio Proc. , 2002, 10 ( 3 ) : 173-185.
  • 8WILLIAM F, GODSILL S J. Mote carlo smoothing with application to audio signal enhancement [ J ]. IEEE Trans. On Signal Processing, 2002,50(2) :438-448.
  • 9金乃高,殷福亮,王冬霞,陈喆.基于子带粒子滤波的一种语音增强方法[J].通信学报,2006,27(4):23-28. 被引量:5
  • 10ANDRIEU C, de FREITAS N. An introduction to MCMC for machine learning[ J ]. Special Issues January-February, 2003,50(2) :5-43.

二级参考文献43

  • 1LIM J,OPPENHEIM A.All-pole modeling of degraded speech[J].IEEE Transactions on Acoustics,Speech and Signal Processing,1978,26(3):197-210.
  • 2EPHRAIM Y.A bayesian estimation approach for speech enhancement using hidden Markov models[J].IEEE Transactions on Signal Processing,1992,40(4):725-735.
  • 3PALIWAL K,BASU A.A speech enhancement method based on Kalman filtering[A].IEEE ICASSP1987[C].Dallas,Texas,USA,1987.177-180.
  • 4GANNOT S,BURSHTEN D,WEINSTEIN E.Iterative and sequential Kalman filter-based speech enhancement algorithms[J].IEEE Transactions on Speech and Audio Processing,1998,6(4):373-385.
  • 5VERMAAK J,ANDRIEU C,DOUCET A.Particle methods for bayesian modeling and enhancement of speech signals[J].IEEE Transactions on Speech and Audio Processing,2002,10(3):173-185.
  • 6王宏禹.非平稳随机信号处理[M].北京:国防工业出版社,1999.
  • 7PAPOULIS A,PILLAI S.Probability,Random Variables and Stochastic Processes[M].McGraw-Hill,2002.
  • 8ARULAMPALAM M S,MASKELL S,GORDON N,et al.A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J].IEEE Transactions on Signal Processing,2002,50(2):174-188.
  • 9MACCORMICK J,ISARD M.Partitioned sampling,articulated objects and interface-quality hand tracking[A].European Conference on Computer Vision[C].Dublin,Ireland,2000.3-19.
  • 10DOUCET A,GORDON N,KRISHNAMURTHY V.Particle filters for state estimation of jump Markov linear systems[J].IEEE Transactions on Signal Processing,2001,49(3):613-624.

共引文献26

同被引文献23

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部