摘要
提出了一种高炉炉温分类辨识的方法PSO-K-FKM,该方法采用基于核函数改进的模糊K均值聚类,利用粒子群对聚类中心寻优.将该方法应用于攀钢3#高炉炉温分类判定,结果表明:该方法基本上能够正确划分高炉炉温状况.与BP方法、GA方法相比,该方法具有识别率高、识别速度快、不易陷入局部最优等优点.
Particle swarm optimization (PSO) algorithm is adopted to optimize the center of fuzz K-means (FKM) with kernel function, which is used to classify the temperature of blast furnace. This PSO-FKM method takes advantage of colony to find new avenue for the solution of complex problems and profits from the character of speediness and efficiency of K-means. Experiments show that it has higher cognition, compared to other methods such as BP and SW-GA. This method can obtain a good result in practice for 3 # blast furnace of Panzhihua Iron and Steel Industry Co. Ltd.
出处
《中南民族大学学报(自然科学版)》
CAS
2008年第3期62-66,共5页
Journal of South-Central University for Nationalities:Natural Science Edition
基金
重庆市科委自然科学基金资助项目(CSTC2006BB2430)