期刊文献+

R^N中一类Schrdinger方程非平凡解的存在性

The Existence of Nontrivial Solution for a Class of Schrdinger Equation in R^N
下载PDF
导出
摘要 研究了一类非线性Schrdinger方程-Δu+V(x)u=f(u),x∈RN,在H1(RN)中非平凡解的存在性,其中N≥3,位势V(x)是RN上的连续函数,并且存在V0>0,使得对x∈RN,都有V(x)≥V0>0. In this paper,we study that the nonlinear Schrodinger equation --△u+V(x)u=f(u),x∈R^N,possesses at least one nontrivial solution in H^1 (R^N) ,where N≥3 and the potential V(x) is a continuous function, satisfying V(x)≥V0〉O for all x∈R^N.
出处 《中南民族大学学报(自然科学版)》 CAS 2008年第3期109-111,共3页 Journal of South-Central University for Nationalities:Natural Science Edition
基金 中南民族大学引进人才科研启动基金资助项目(YZZ08001)
关键词 Schroinger方程 对称山路定理 非平凡解 存在性 Schrodinger equation symmetric Mountain Pass Theorem nontrivial solution existence
  • 相关文献

参考文献7

  • 1Bartsch T, Wang Z. Existence and multiplicity results for some superlinear elliptic problems on R^N [J]. Comm Partial Differential Equations, 1995,20:1 725- 1 741.
  • 2Costa D. On a class of elliptic systems in R^N [J]. Electronic J Differential Equations, 1996 (9) : 295- 303.
  • 3Rabinowitz P. On a class of nonlinear Schrodinger equations [J]. Z Angew Math Plays, 1992, 43 : 270- 291.
  • 4彭超权,杨健夫.一类非线性薛定谔方程的多解的存在性(英文)[J].应用数学,2007,20(4):640-645. 被引量:1
  • 5Ding Y, Lee C. Multiple solutions of Schrodinger equations with indefinite linear part and super or asymptotically linear terms [J]. J Differential Equations, 2006,222 : 137-163.
  • 6Furtatdo M,Maia L,Silva E. Solutions for a resonant elliptic system with coupling in R^N[J]. Comm Partial Differential Equations, 2002,27 : 1 515-1 536.
  • 7Silva E. Subharmonic solutions for subquadratie Hamiltonian systems [J]. J Differential Equations, 1995,115:120-145.

二级参考文献10

  • 1Alama S,Li Y Y.On multibump hound states for certain semilinear equations[J].Indiana J.Math,1992,41:983-1026.
  • 2Ambrosetti A,Rabinowitz P.Dual variational methods in critical point theory and applications[J].J.Funct.Anal,1973,14:349-381.
  • 3Bartolo P,Benci V,Fortunato D.Abstract critical theorems and applications to some nonlinear problems with strong resonance at infinity[J].Nonlinear Anal,1983,7:981-1012.
  • 4Bartsch T,Wang Z.Existence and multiplicity results for some superlinear elliptic problems on RN[J].Comm.PDE,1995,20:1725-1741.
  • 5Costa D G.On a class of elliptic systems in RN[J].Electronic J.Diff.Eq,1996,9:295-303.
  • 6Coti-Zelati V,Rabinowitz P.Homoclinic type solutions for a semilinear elliptic PDE on RN[J].Comm.Pure.appl.Math,1992,46:1217-1269.
  • 7Ding Yanheng,Lee Cheng.Multiple solutions of Schr(o)dinger equations with indefinite linear part and super or asymptotically linear terms[J].J.Diff.Eq,2006,222:137-163.
  • 8Ding Yanheng,Luan Shixia.Multiple solutions/or a class of nonlinear Schr(o)dinger equations[J].J.Diff.Eq,2004,27:423-457.
  • 9Li G B.Zhou H S.Multiple solutions ti p-Laplacian problems with asymptotic nonlinearity as uP-1 at infinity[J].J.London Math.Soc,2002,65:123-138.
  • 10Rabinowitz P H.On a class of nonlinear Schoodingcr equations[J].Z.Angew.Math.Phys,1992,43:270-291.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部