期刊文献+

Exact Solitary-wave Solutions and Periodic Wave Solutions for Generalized Modified Boussinesq Equation and the Effect of Wave Velocity on Wave Shape

Exact Solitary-wave Solutions and Periodic Wave Solutions for Generalized Modified Boussinesq Equation and the Effect of Wave Velocity on Wave Shape
原文传递
导出
摘要 By means of the undetermined assumption method, we obtain some new exact solitary-wave solutions with hyperbolic secant function fractional form and periodic wave solutions with cosine function form for the generalized modified Boussinesq equation. We also discuss the boundedness of these solutions. More over, we study the correlative characteristic of the solitary-wave solutions and the periodic wave solutions along with the travelling wave velocity's variation. By means of the undetermined assumption method, we obtain some new exact solitary-wave solutions with hyperbolic secant function fractional form and periodic wave solutions with cosine function form for the generalized modified Boussinesq equation. We also discuss the boundedness of these solutions. More over, we study the correlative characteristic of the solitary-wave solutions and the periodic wave solutions along with the travelling wave velocity's variation.
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2008年第4期691-705,共15页 应用数学学报(英文版)
基金 Supported by the Shanghai Leading Academic Discipline Project(No.T0502) the Science Foundation of the Education Commission of Shanghai(No.07ZZ83).
关键词 Generalized modified Boussinesq equation exact solitary-wave solution periodic wave solution Generalized modified Boussinesq equation, exact solitary-wave solution, periodic wave solution
  • 相关文献

参考文献11

  • 1Berryman, J. Stability of solitary waves in shallow water. Phys. Fliids, 19:771-777 (1976).
  • 2Boussinesq, J. Theorie des ondes et des ramous qui se propagent le long d'un canal rectangulaire horizontal,en comuniquant au liquide contene dans ce canal vitesses sunsiblement parielles de la surface au fond. J. Math. Pures Appl., 2:255-108 (1872).
  • 3Clarkson, P.A., Kruskal, M.D. New similarity reductions of the Boussinesq equation. J. Math. Phys., 30: 2201 2213 (1989).
  • 4Clarkson, P:A. The Painleve property, a modified Boussinesq equation and a modified KadomtsewPetviashvi- liequation. Physica D: Nonlinear Phenomena, 19(3): 447-450 (1986).
  • 5Korsunsky, S., Longman, I. Nonlinear wave in dispersive and dissipative systems with couple fields. Spinger- Verlag. Berlin. 1997.
  • 6Levine, H.A., Sleeman, B.D. A note on the nonexistence of global solutions of initial boundary value problems for the Boussinesq equation utt = 3uxxx + uxx - 12(u^2)xx. J. Math. Anal. Appl., 107:206-210 (1985).
  • 7Lineras F. Global existence of small solution for generalized Boussinesq equation. J. Differential Equations, 106:257-293 (1993).
  • 8Makhankov, V.G. Dynamics of classical solitary-wave. Phys. ReiD. A, 35(1):1-128 (1978).
  • 9Wazwaz, A:M. Nonlinear variants of the improved Boussinesq equation withcompact and noncompact structures. Computers and Mathematics with Applications, 49:565-574 (2005).
  • 10Yang, Z.J., Wang, X. Blowup of solutions for improved Boussinesq type equation. J. Math. Anal. Appl., 278:335-353 (2003).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部