摘要
带粗糙核的分数次积分交换子定义为[b,TΩ,l]f(x)=∫RnΩ(x-y)|x-y|n-l(b(x)-b(y))f(y)dy,其中Ω∈Ls(Sn-1),1≤s<∞,是零次齐次函数,b∈CBMOq(Rn).在一定条件下,得到了分数次积分交换子[b,TΩ,l]及其相应的极大算子在齐次Morrey-Herz空间上的CBMO估计.
The commutators of the fractional integrals with rough kernel is defined by [b,TΩ,l]f(′x)=∫R^nΩ(x-y)/|x-y|^n-l(b(x)-b(y))f(y)dy,Ω∈L^s(S^n-1),1≤s〈∞,where Ω∈L^s ( S^n-1 ), 1 ≤ s 〈 ∞, is a homogeneous of degree zero, b ∈ CBMOq ( R^n). Under a certain condition, the CBMO estimates for the commutators of the fractional integrals with rough kernel [ b, TΩ, l ] and its maximal operator on the homogeneous Morrey-Herz spaces are obtained.
出处
《重庆工学院学报(自然科学版)》
2008年第9期52-56,共5页
Journal of Chongqing Institute of Technology
基金
国家自然科学基金资助项目(10571014)
甘肃省教育厅导师基金资助项目(0701-15)