摘要
讨论了亚纯函数的唯一性问题,证明存在一个具有8个元素的集合S,使得对任意2个非常数的亚纯函数f与g,只要满足E3)(S,f)=E3)(S,g)和E({∞},f)=E({∞},g),就必有f≡g.
The uniqueness of meromorphic functions is discussed. It is proved that there exists a set S with 8 elements such that any two nonconstant meromorphic functionsand must be identical f≡ g when satisfying fand g satisfying E3)( S,f) = E3)( S,g) and E^-( {∞} , ,f) = E^-( {∞} },g).
出处
《重庆工学院学报(自然科学版)》
2008年第9期64-67,共4页
Journal of Chongqing Institute of Technology