摘要
定义了正实数组a的t次二重幂平均M[t]m,n(a;α;λ),获得了使不等式M[r]m,n(a;α;λ)≤(≥)Mn[θ](a)成立的机器可实现的充要条件和充分条件,借助于Mathematica数学软件给出了一些算例.这里,Mn[θ](a)为正实数组a的θ次幂平均,m,n≥2,min{α}<θ<max{α},实数r>0,采用的方法是降维法.
For a set of positive quantities, the double power mean Mm,n^[r]( a, a ; λ. ) of order t is definited. .We obtain a sufficient and necessary condition such that Mm,n^[r] (a;a;λ) ≤(≥) Mn^[θ] (a) holds, and can be dealed with computer. Using Mathematica we give several numerical examples. Here Mn^[θ](a) is the power mean of the set a and order θ, and m, n ≥ 2, min { a } 〈 θ 〈 max{ a }, r 〉 0. Methods used here are procedures of descending dimension.
出处
《成都大学学报(自然科学版)》
2008年第3期198-203,共6页
Journal of Chengdu University(Natural Science Edition)
基金
国家自然科学基金资助项目(10671136)
四川省教育厅自然科学重点项目资助(07ZA207)
关键词
幂平均
二重幂平均
降维法
power mean
double power mean
procedure of descending dimension