摘要
证明了椭圆的内接m多边形的最大面积V2(m)≤1/2mr1 r2sin2π/m,并给出三维空间的椭球的内接四面体的最大体积及n维空间中超椭球的内接单形的最大体积的两个猜想.
To prove the maximum area of ellipse inscribed polygon V2^(m)≤1/2mr1 r2sin 2x/m, And to narrate the two conjectures are the maximum volume of the ellipsoid' s inscribed tetrahedron in three-dimensional space and the hyper ellipsoid' s inscribed monmorphism in n-dimensional space.
出处
《成都大学学报(自然科学版)》
2008年第3期204-205,共2页
Journal of Chengdu University(Natural Science Edition)
关键词
椭田内接多边形
面积
单形
超椭球
ellipse inscribed polygon
area
monomorphism
hyperellipsoid