期刊文献+

时序空间关联规则挖掘及其应用研究 被引量:5

Time-serial Spatial Association Data Mining and Its Applications
下载PDF
导出
摘要 空间关联规则挖掘是空间数据挖掘的重要内容,文中给出了时序空间关联规则挖掘的相关概念、原理及实现(算法),研究了时序空间关联规则挖掘数据集的构造方法,提出通过空间实体关联关系和时间项转置方法将处于不同时刻的、相互独立的空间数据集进行重构,生成隐含了时序空间关联特征的挖掘数据集,进而可应用关联规则挖掘算法获取时序空间关联知识,初步进行了时序空间关联规则挖掘的应用研究。 Spatial association data mining is an important area of spatial data mining. This paper presented the basic concepts, principle and algorithm of time-serial spatial association data mining. By applying association relationship between spatial entities and item-time transmitting, the dependent datasets at difference times could be integrated into a new dataset (N-dataset) which contained the sequential information of the original datasets. Available association rule mining algorithms could be easily applied to the N-dataset to extract time-serial spatial association rulles.
作者 沙宗尧
出处 《地理空间信息》 2008年第5期18-21,共4页 Geospatial Information
基金 教育部地理信息系统重点实验室开放资金资助项目(WD200610)
关键词 空间数据挖掘 空间关联规则 时序关联 算法 spatial data mining spatial association rule time serial association algorithm
  • 相关文献

参考文献12

  • 1李德仁,王树良,李德毅,王新洲.论空间数据挖掘和知识发现的理论与方法[J].武汉大学学报(信息科学版),2002,27(3):221-233. 被引量:237
  • 2[2]Agrawal R,lmielinski T,Swami A.Mining Association Rules be-tween Sets of Items in Large Databases.//In:Proc.of the 1 993ACM-SIGMOD[C].Washington,DC:International Conferenceon management of Data,1993.207-216
  • 3李德仁,王树良,史文中,王新洲.论空间数据挖掘和知识发现[J].武汉大学学报(信息科学版),2001,26(6):491-499. 被引量:180
  • 4[4]Shekhar S,Zhang P,Huang Y,et al.Trends in Spatial Data Min-ing//In:H.Kargupta,A.Joshi(Eds.),Data Mining:Next Gener-ation Challenges and Future Directions[C].AAAI/MIT Press.2003.357-380
  • 5[5]Li Y,Zhu S,Wang X S,et al..Looking into the Seeds oftime:Dis-covering Temporal Patterns in large transaction sets[J].Informa-tion Sciences,2006,176:1003-1031
  • 6蒋良孝,蔡之华.时序数据库中的数据挖掘研究[J].微机发展,2003,13(5):90-92. 被引量:5
  • 7[7]Srikant R,Agrawal R.Mining Generalized Association Rule//.In:Proc.of the 21th VLDB Conference,Zurich[C].Switzerland:1995.407-419
  • 8[8]Han J,Fu Y.Discovery of Multi-level Association Rules fromLarge Databases.//In:Proc.of the 21th VLDB Conference[C].Switzerland:Zurich.1995.420-43l
  • 9[9]Srikant R,Agrawal R.Mining Quantitative Association Rules inLarge Relational Tables.//In:Proc.of the 1 996 ACM SIGMOD Conference[C]Montreal,Quebec,Canada.1996,6-12
  • 10[10]Lin M Y,Lee S V.Interactive Sequence Discovery by Incremental Mining[J].Information Sciences.2004.165:187-205

二级参考文献80

共引文献386

同被引文献52

引证文献5

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部