期刊文献+

具有拟周期系数的schrodinger方程的可约化与平衡点的线性稳定性

Reducibility and Stability of Equilibrium Point of Schrodinger Equation with Quasiperiodic Coefficients
原文传递
导出
摘要 对Schrodinger方程(A):iut-uxx+c(t)u=0u(t,0)=u(t,2π)=0,u(t,x)=∑∞n=1qn(t)n(x)进行讨论.n(x)是特征方程y″+λy=0y(0)=y(2π)=0中特征值对应的特征函数,c(t)=a+εc1(t),其中a是常数,c1(t)是以ω为频率的拟周期函数.直接判断方程的稳定性十分困难,把方程中的c(t)约化为常数,然后利用约化后的结果来判断方程(A)的平衡点的线性稳定性,方法简单实用. Schrodinger equation {iut-uxx+c(t)u=0 u(t,0)=u(t,2π)=0,(A),u(t,x)=∞∑n=1qn(t)Фn(x) is a eigenfunction to eigenvalue λn in{y″+λy=0 y(0)=y(2π)=0^,c(t) =a+εc1(t) ,which a is a constant,c1(t) is a quasiperiodic funetion with irequencies ω. In this paper, at first, c(t) is reduced to a constant, then use the equation after reducibility to judge the linear stability of equilibrium point of (A).
作者 迟东璇
出处 《数学的实践与认识》 CSCD 北大核心 2008年第18期193-200,共8页 Mathematics in Practice and Theory
基金 辽宁省教育厅高等学校科研资助(2004C59)
关键词 约化性 拟周期函数 迭代 线性稳定 reducibility quasiperiodic function iteration linear stability
  • 相关文献

参考文献6

  • 1Bogolyubov N N, Samolenko A M. Methods of Accelerated Convergence in Nonlinear Mechanics[M]. Spring- Verlag, New, 1976.
  • 2Jorba A, Simo C. On the reducility of linear differential equations with quasiperiodic eoffieients[J]. J Differential Equation, 1992,98 : 111-124.
  • 3Xu J, Zheng Q. On the reducibility of linear differential equations with quasiperidoic cofficients which are degenerate[J]. Proc Amer Math Soc, 1998,126 : 1445-1451.
  • 4Palmer K. On the reducibility of the almost Periodic systems of Linear Differential equations[J]. J Differential Equations, 1980,36 : 374-390.
  • 5Lancaster P. Theory of Matrics Academic Press[M]. New York and London,1969.
  • 6You J. Perturbations of low dimensional tori for Hamilitionian systems[J]. J Dofferential Equations,1999,152(2): 1-29.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部