期刊文献+

三阶非线性奇异边值问题正解存在性 被引量:1

Existence of Positive Solutions for a Third-Order Nonlinear Singular Boundary Value Problem
原文传递
导出
摘要 研究三阶奇异边值问题-x=f(t,x,x,′x)″,t∈(0,1),x(0)=x(′0)=x(′1)=0,其中f:(0,1)×(0,∞)×R×R→R连续,f在x=0,t=0与t=1处具有奇性.通过运用上下解方法和单调逼近理论,得到了该问题新的正解的存在性结果. In this paper, we are concerned with the following third-order nonlinear singular boundray value problem-x″′=f(t,x,x′,x″),t∈(0,1),x(0)=x′(0)=x′(1)=0,where f:(0,1)×(0,∞)×R×R→R is continuous and the nonlinear term f can have singularities at x lower 0, and t = 1. The new existence result of positive solutions is given by using upper and solutions and monotone iterative techniques
出处 《数学的实践与认识》 CSCD 北大核心 2008年第18期207-210,共4页 Mathematics in Practice and Theory
基金 国家自然科学基金数学天元基金(10626004) 江苏省“青蓝工程”项目(QL200613) 江苏省研究生创新工程培养项目 徐州师范大学自然科学基金重点项目(06XLA03)
关键词 上下解 三阶奇异边值问题 正解 存在性 upper and lower solutions Third-order singular boundary value problem positive solutions Existence
  • 相关文献

参考文献5

  • 1Agarwal R P, Donal O'Regan, Lakshmikontham V, Leela S. Existence of positive solutions for singular initial and boundary value problems via the classical upper and lower solution approach[J]. Nonlinear Analysis, 2002,50(2): 215-222.
  • 2Donal O'Regan, Agarwal R P. Singular problems: an upper and lower solution approach[J]. J Math Anal Appl, 2000,251 (1): 230-250.
  • 3Jiang D, Agarwal R P. A uniqueness and existence theorem for a singular third-order boundary value problem on [0,∞)[J]. Appl Math Lett,2002,15(4):445-451.
  • 4葛渭高.三阶常微分方程的两点边值问题[J].高校应用数学学报(A辑),1997(3):265-272. 被引量:24
  • 5Du Zengji, Ge Weigao, Lin Xiaojie. Existence of solutions for a class of third-order nonlinear boundary value problem[J]. J Math Anal Appl,2004,294(1):104-112.

二级参考文献2

共引文献23

同被引文献6

  • 1蒋达清.三阶非线性微分方程正解的存在性[J].东北师大学报(自然科学版),1996,28(4):6-10. 被引量:36
  • 2Zeqing Liu, Jeong Sheok Ume, Shin Min Kang. Positive solutions of a singular nonlinear third order two-point boundary value problem[J]. J Math Anal Appl, 2007, 326: 589-601.
  • 3Donal O/Regan, A garwal R P. Singular problems: an upper and lower solution approach[J]. J Math Anal Appl, 2000, 251(1): 230-250.
  • 4Guo D, V Lakshmikantham. Nonlinear Problems in Abstract Cones[M]. San Diego: Academic Press, 1988: 1-137.
  • 5Zhang G, Sun J. Positive solutions of m-point boundary value problems[J]. J Math Anal Appl, 2004(291): 406-418.
  • 6Yujun Cui, Yumei zou. Nontrivial solutions of singular superlinear m-point boundary value problems[J]. Appl Math Comput, 2007, 187: 1256-1264.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部