摘要
主要是将半定规划(Semidefinite Programming,简称SDP)的内点算法推广到二次半定规划(Quadratic Semidefinite Programming,简称QSDP),重点讨论了其中搜索方向的产生方法.首先利用Wolfe对偶理论推导得到了求解二次半定规划的非线性方程组,利用牛顿法求解该方程组,得到了求解QSDP的内点算法的H..K..M搜索方向,接着证明了该搜索方向的存在唯一性,最后给出了搜索方向的具体计算方法.
This paper extends the interior point algorithm for solving Semidefinite Programming (SDP) to Quadratic Semidefinite Programming(QSDP), especially discussing the generation of search direction. Firstly, we derive the nonlinear equations for the solution of QSDP using Wolfe's dual theorem. The H.. K.. M search direction is got by applying Newton method to the equations. Then we prove the existence and uniqueness of the search direction, and give how to compute H. K. M search direction concretely.
出处
《数学的实践与认识》
CSCD
北大核心
2008年第18期233-238,共6页
Mathematics in Practice and Theory
基金
北京信息科技大学校科研基金(5029323902)
北京市教委科技面上项目(KM200811232009)
关键词
半定规划
二次半定规划
内点算法
搜索方向
牛顿法
semidefinite programming
quadratic semidefinite programming
interior point algorithm
search direction
newton method