期刊文献+

余代数上余倾斜余模的结构

Characterization of Cotilting Comodules
原文传递
导出
摘要 研究了余代数上余倾斜余模的结构特征,证明了每个余倾斜余模都可以写成不可分解的两两非同构的余模的直和形式,每个余倾斜余模包含所有的内射不可分解模作为直和项.最后构造了余倾斜余模的两个例子. We discuss the characterization of cotilting comodule and prove that every cotilting comodule is a direct sum of indecomposable and pairwise non-isomorphic comodules, then prove every cotilting comodule contains all injective indecomposables as direct summands. Using the knowledge of quiver and the path coalgebra, Finally, give some examples of cotilting comodule for coalgebras.
出处 《数学的实践与认识》 CSCD 北大核心 2008年第18期239-244,共6页 Mathematics in Practice and Theory
关键词 余代数 路余代数 余倾斜余模 coalgebras path coalgebra cotilting comodules
  • 相关文献

参考文献5

  • 1Happel D, Ringel C M. Tilted algebras[J]. Transactions of the American Mathematical Society, 1982,274:399- 443.
  • 2Bongartz K, Tilted Mlgebras[C]// Proceedings of ICRA Ⅲ, Lecture Notes in Mathematics, Berlin, Springer- Verlag, 1981, (903) :26-38.
  • 3Colby R R. Tilting cotilting and serially tilted rings[J]. Comm In Algebra, 1990,18(5):1585-1615.
  • 4Green J A. Locally finite representations[J]. Journal of Algebra, 1976, (41) : 137-171.
  • 5Takeuchi M. Morita theorems for categories of comodules[J]. J Fuc Univ Tokyo, 1977, (24): 629-644.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部