期刊文献+

带折痕的Loop细分曲面等距面处理算法 被引量:5

An Offset Algorithm for Loop Subdivision Surface with Creases
下载PDF
导出
摘要 Loop细分曲面不同细分层次的网格面可作为不同加工工序的加工模型.现有等距面生成算法因未考虑折痕和边界的特殊情况,当折痕或边界存在时将会生成与预期结果有较大差别的等距面.给出了折痕等尖锐特征处极限等距位置的计算方法,以及根据尖锐特征点极限位置反求初始网格等距位置的Gauss-Jacobi迭代公式,并证明了其迭代收敛性.采用文中算法得到的等距网格面令人满意. The different levels of Loop subdivision surfaces could be used as the geometrical models for different procedures of the NC machining. Using the existing algorithms which did not consider the crease or the border, we may receive different results other than what we expect. Firstly, a method is presented to compute the limit offset positions for the sharp points. Secondly, the Gauss-Jacobi iterative formulas to compute the offset positions of the initial control points based on the limit offset positions are provided. At last, the astringency of the iterative formulas is proved. The results illustrate the feasibility of the methods.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2008年第10期1261-1265,共5页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(60603089) 北京市科技新星计划(2007B018)
关键词 折痕 等距面 法矢 LOOP细分 crease offset surface normal Loop subdivision
  • 相关文献

参考文献4

  • 1Loop C T. Smooth subdivision surfaces based on triangles [D]. Salt Lake City: The University of Utah, 1987
  • 2Hoppe H, DeRose T, Duchamp T. Piecewise smooth surface reconstruction [J]. Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, Orlando, 1994: 295- 302
  • 3方文波.线性方程组的矩阵求解算法[J].大学数学,2004,20(5):91-96. 被引量:9
  • 4Schweitzer J F.. Analysis and application of subdivision surfaces[D]. Seattle: University of Washington, 1996

二级参考文献1

  • 1同济大学.线性代数[M].北京:高等教育出版社,2002.1.

共引文献8

同被引文献49

  • 1方文波.线性方程组的矩阵求解算法[J].大学数学,2004,20(5):91-96. 被引量:9
  • 2李桂清,马维银,鲍虎军.带尖锐特征的Loop细分曲面拟合系统[J].计算机辅助设计与图形学学报,2005,17(6):1179-1185. 被引量:22
  • 3李桂清,吴壮志,马维银.自适应细分技术研究进展[J].计算机辅助设计与图形学学报,2006,18(12):1789-1798. 被引量:21
  • 4Kurgano J. Generation of NC tool .path for subdivision surfaces [C]// International Conference on CAD/Graphics. Kunming: [s. n. ], 2001: 1-7.
  • 5Catmull E, Clark J. Reeursively generated B-spline surfaces on arbitrary topological meshes[J]. Computer-Aided Design, 1978,10(6) : 350-355.
  • 6Halstead M, Kass M, DeRose T. Efficient, fair interpolation using Catmull-Clark surfaces [C]// SIGGRAPH' 93 Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM Press, 1993: 35-44.
  • 7Zorin D, Duchamp T, Biermann H. Smoothness of subdivision surfaces on the boundary[R]. New York: New York University,2000.
  • 8原恩桃.细分曲面数控加工关键技术研究[D].南京:南京航空航天大学,2010.
  • 9Jos Stare, Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values[C]//SIGGRAPH'98 Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM Press,1998: 395-400.
  • 10Qu x z, Brent S. A 3D surface offset method for STL-format models [J]. Rapid Prototyping Journal, 2003, 9(3): 133-141.

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部